期刊文献+

基于优化样本点的双重Kriging模型的重要性测度求解方法

A Double Kriging Model Method Based on Optimization Sample Points for Importance Measure Analysis
下载PDF
导出
摘要 针对工程实际中极限状态函数往往是隐式的问题,提出了基于优化样本点的双重Kriging模型的重要性测度求解方法。该方法首先以少量初始样本点建立基本变量与响应值间的Kriging代理模型,通过全局优化的方法寻优找到Kriging预测值不确定性较大的点,并将其加入到初始样本点,从而在尽量少样本点的情况下建立满足精度的Kriging代理模型。该方法将基本变量与功能函数值以及基本变量与条件失效概率间的隐式关系以Kriging代理模型替代,在保证精度的情况下大大降低了矩独立的基本变量对失效概率重要性测度求解过程的计算量,数值算例和工程算例说明了该方法的工程适用性和可行性。 For the engineering problems involving implicit limit state functions, a double Kriging model method based on optimization sample points for importance measure analysis is discussed in this paper. Firstly, in this method, a small amount of initial sample points are employed to build the Kriging surrogate model which relates the basic variables to the response. Then the subsequent points with relatively high uncertainty can be added to the sam- ple points with global optimization method. Finally, the Kriging surrogate model can give fairly good accuracy with a minimum number of sample points. The relationship between the basic variables and the response function and that between the basic variables and the conditional probability of failure are substituted by Kriging models ; so the com- putation cost of the importance measure is reduced largely. To illustrate the engineering applicability and feasibility of the method, numerical and engineering examples are provided and discussed.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第2期201-205,共5页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(51175425) 高等学校博士学科点专项科研基金(20116102110003)资助
关键词 双重Kriging模型 优化样本点 重要性测度 全局优化 条件失效概率 double Kriging model optimization sample points importance measure global optimization condi-tional probability of failure
  • 相关文献

参考文献5

  • 1Sobol I M.Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates[J].Mat Comput Sim-ulation 2001,55(1):221-280.
  • 2Borgonovo E.A New Uncertainty Importance Measure[J].Reliab Eng Syst Saf,2007,92(6):771-784.
  • 3崔利杰,吕震宙,赵新攀.矩独立的基本变量重要性测度及其概率密度演化解法[J].中国科学:技术科学,2010,40(5):557-564. 被引量:6
  • 4Donald R.Jones.A Taxonomy of Global Optimization MethodsBased on Response Surfaces [J].Journal of Global Optimization 2001,21(4):345-383.
  • 5Bichon B J,Eldred M S,Swiler L P,Mahadevan S,McFarland J M.Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions[J].AIAA Journal,2008,46(10):2459-2468.

二级参考文献11

  • 1陈建兵,李杰.结构随机响应概率密度演化分析的数论选点法[J].力学学报,2006,38(1):134-140. 被引量:41
  • 2李杰,陈建兵.随机动力系统中的广义密度演化方程[J].自然科学进展,2006,16(6):712-719. 被引量:24
  • 3Satelli A. Sensitivity analysis for importance assessment. Risk Anal, 2002, 22:579-590.
  • 4Iman R L, Hora S C. A robust measure of uncertainty importance for use in fault tree system analysis. Risk Anal, 1990, 10:401--406.
  • 5Satelli A. Sensitivity analysis for importance assessment. Risk Anal, 2002, 22:579--590.
  • 6Helton J C, Davis F J. Latin hypercube sampling and the propagation of uncertainty in analysis of complex systems. Reliab Eng Syst Safe, 2003, 81: 23--69.
  • 7Chun M H, Hart S J, Tak N I. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function. Reliab Eng Syst Safe, 2007, 70:313--321.
  • 8Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst Safe, 2007, 92:771--784.
  • 9Li J, Chen J B, Fan W L. The equivalent extreme-value event and evaluation of the structural system reliability. Struct safe, 2007, 29:112-- 131.
  • 10Lu Z Z, Liu C L, Yue Z F. Probabilistic safe analysis of the working life of a powder-metallurgy turbine disk. Mater Sci Eng A, 2005, 395: 153--159.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部