期刊文献+

σ-数值切割单元法(σ-SIBM)——解决σ-坐标在海洋陡坡区域数值模拟中压强梯度误差的新方法 被引量:1

原文传递
导出
摘要 σ-坐标是地表水三维水动力及物质输运模型使用最多的垂向坐标,但陡坡区域水平压力梯度误差长期制约着σ-坐标在海洋模拟中的发展,现有解决方法如z-平面法、相对密度法、提高精度法和地形光滑法等都未取得满意的结果.本文提出σ-数值切割单元法,在陡坡区域引入伪床面,降低H/x,消除了长期存在的区域水平压力梯度问题,将问题转化为陡坡位置的非贴体网格问题,进一步采用数值切割单元法解决边界拟合问题.对数值切割单元法的关键步骤,如床面数值识别、网格单元或节点分类、数值源项的半隐式求解以及切割速度的插值计算,提出适合于地表水地形分布特性的具体解决方法.模型既利用了传统σ-网格的简单高效性,又克服了σ-坐标在陡坡或复杂地形中应用的局限性,实现了σ-坐标和数值切割单元法的联合优势.理想海山试验表明,σ-数值切割单元法所产生的最大速度误差相对z-平面法减小近一倍,全域动能误差减小两个量级左右.海沟、海山、大陆架及河口区域存在下的复杂地形数值试验表明,模型对复合陡坡地形同样具有很好的适应性.
出处 《中国科学:地球科学》 CSCD 北大核心 2014年第4期753-765,共13页 Scientia Sinica(Terrae)
基金 国家自然科学基金项目(批准号:51209239 51109194) 中央民族大学"985工程"项目(编号:MUC98507-08)资助
  • 相关文献

参考文献30

  • 1黑鹏飞,方红卫,陈稚聪,夏建新.数值切割单元法在河流数值模型中的应用前景展望[J].水利学报,2013,44(2):173-182. 被引量:7
  • 2Batteen M L. 1988. On the use of sigma coordinates in large-scale ocean circulation models. Ocean Model, 77:3-5.
  • 3Berntsen J, Oey L Y. 2010. Estimation of the internal pressure gradient in o--coordinate ocean models: Comparison of second-, fourth-, and sixth-order schemes. Ocean Dynam, 60:317-330.
  • 4Berntsen J. 2011. A perfectly balanced method for estimating the internal pressure gradients in r-coordinate ocean models. Ocean model, 38: 85-95.
  • 5Chu P, Fan C. 1997. Sixth-order difference scheme for sigma coordinate ocean models. J Phys Oceanogr, 27:2064-2071.
  • 6Ciappa A C, Fortunato A B, Baptista A M. 1996. Evaluation of horizontal gradients in sigma-coordinate shallow water models. Atmos-Ocean, 34: 489-514.
  • 7Ciappa A C. 2008. A method for reducing pressure gradient errors improving the sigma coordinate stretching function: An idealized flow patterned after the Libyan near-shore region with the POM. Ocean Model, 23:59-72.
  • 8Ezer T, Arango H, Shchepetkin A F. Developments in terrain-following ocean models: Intercomparisons of numerical aspects. Ocean Model, 2002, 4:249-267.
  • 9Fadlun E A, Verzicco R, Orlandi P, et al. 2000. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys, 161:35-60.
  • 10Gary J M. 1973. Estimate of truncation error in transformed coordinate primitive equation atmospheric models. J Atmos Sci, 30:223-233.

二级参考文献44

  • 1张幸农,应强,陈长英.长江中下游崩岸险情类型及预测预防[J].水利学报,2007,38(S1):246-250. 被引量:28
  • 2钟德钰,张红武,张俊华,丁赟.游荡型河流的平面二维水沙数学模型[J].水利学报,2009,39(9):1040-1047. 被引量:32
  • 3吴福生,王文野,姜树海.含植物河道水动力学研究进展[J].水科学进展,2007,18(3):456-461. 被引量:36
  • 4Peskin C S . Flow patterns around heart valves: A digital computer method for solving the equations of motion [ D ] . Albert Einstein college of medicine, University microfilms, 1972 .
  • 5Meyer M, Devesa A Hickel, S Hu, et al . A conservative immersed interface method for large-eddy simulation of incompressible flows[J] . Journal of computational physics, 2010, 229:6300-6317.
  • 6Ye T, Mittal R, Udaykumar H S . An accurate Cartesian grid method for viscous incompressible flows with com- plex immersed boundaries[J] . Journal of computational physics, 1999, 156: 209-240.
  • 7Causon D M, Mingram D, Mingham C G, et al . Calculation of shallow water flows using a Cartesian cut cell ap- proach[J] . Advances in water Resources, 2000, 23:545-562 .
  • 8Nourgaliev R R . Numerical prediction of interfacial instabilities: sharp interface method (SIM)[J] . Journal of computational physics, 2008, 227 : 3940-3970.
  • 9Fadlun E A, Verzicco R, Orlandi P, et al. Combined immersed-boundary finite-difference methods for three-di- mensional complex flow simulations[J] . Journal of computational physics, 2000, 161 : 35-60.
  • 10Yang G, Causon D M, Ingram D M, et al. A Cartesian cut cell method for compressible flows[ J] . Part A. Static- body problems, Aeronautical journal, 1997, 2 : 47-56.

共引文献6

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部