期刊文献+

基于独立成分分析的时间自相关方法在功能磁共振激活区自适应提取中的应用 被引量:1

Application of fMRI Activation Area Adaptive Extraction Based on Temporal Self-Correlation Method of ICA
下载PDF
导出
摘要 传统基于ICA的激活区检测手段是将分离后的独立成分与参考信号做相关性分析。实际问题中,不同区域的脑血流动力学响应情况不同,因此往往得不到标准的参考信号。针对此类问题,提出时间自相关方法(TSC)与ICA方法结合,在不需要参考信号的情况下,通过检测体素点各周期的时间序列相关性,对fMRI数据进行激活区提取。应用5-邻域ICA方法对fMRI数据逐点处理,然后应用时间自相关算法检测各时间序列周期间的相关性,选择最大的自相关系数作为该体素点的信号值。再通过Z变换将相关系数分布转换为服从N(0,1)的Z分布,提取出具有显著性差异(a=0.05)的激活区。将自相关算法应用于仿真数据和12组双手握拳运动的真实fMRI数据的处理,结果表明该方法能够准确提取出仿真数据中的激活区。对真实数据的处理,该方法在空间准确性上与GLM方法无显著性差别(0.465 3±0.136 8 vs 0.490 5±0.134 1),在时间准确性上显著优于GLM方法 (0.636 4±0.011 1 vs 0.369 2±0.010 9),具有良好的脑功能激活区检测及空间定位能力。 The traditional ICA based activation zone detection is to analyze the correlation between the separated independent component and the reference signal. However, in practical problems, since the differences among the hemodynamic responses of the cerebral regions, the standard reference signal is often not available. Aiming at such problems, in this paper, the method of temporal self-correlation (TSC) combined with infomax-ICA was proposed. This method processed fMRI data point by point with 5-adjacent voxels based ICA, then detected the correlation between each time series period with temporal self-correlation algorithm and selected the maximum autocorrelation coefficient as the signal value of the voxel. After that we conversed correlation coefficient distribution to Z distribution which obey N (0, 1 ) by Z-transform, extracted the active regions with significant difference ( α = 0.05 ) in the statistical parametric mapping. The algorithm was applied to deal with simulation data and 12 set of real fMRI data of fist movement with both hands. Results: The method can accurately extract the active region of the simulation data. For real data processing, results of this method have a high similarity with GLM method in the spatial domain ( 0. 465 3 ± 0. 136 8 vs 0. 490 5 ±0. 134 1) and better than GLM method in the temporal domain (0. 636 4± 0. 011 1 vs 0. 369 2 ± 0. 010 9). These results have statistical significant. Experimental results showed that, this method has good capacities of detection of functional brain activation areas and spatial orientation.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2014年第2期194-201,共8页 Chinese Journal of Biomedical Engineering
基金 辽宁省自然科学基金(201102163) 国家自然科学基金(50907041) 辽宁省教育厅科研项目(201134120)
关键词 独立分量分析(ICA) FMRI 时间自相关 假设检验 自适应阈值 independent component analysis (ICA) fMRI temporal self-correlation hypothesis test adaptive threshold value
  • 相关文献

参考文献12

  • 1Jutten C,Harault J.Blind separation of sources,part Ⅰ:an adaptive algorithm based on neuromimetic architecture[J].Signal Processing,1991,24(1):1-10.
  • 2潘丽丽,史振威,唐焕文,唐一源,张伟伟.fMRI信号盲分离的一种独立成分分析算法[J].大连理工大学学报,2005,45(4):607-611. 被引量:6
  • 3Esposito F,Formisano E,Seifritz E,et al.Spatial independent component analysis of functional MRI time-series:to what extent do results depend on the algorithm used[J].Human Brain Mapping,2002,16:146-157.
  • 4韩彤,崔世民,刘梅丽,刘力,向华东,雷静,刘卉,郭军,郭迎,靳松,郝妮娜,翁旭初.利用fMRI和双手交替运动模式研究脑肿瘤所致的运动功能重组[J].中国医学影像技术,2005,21(9):1324-1328. 被引量:5
  • 5McKeown MJ,Makeig S,Brown GG,et al.Analysis of fMR1 data by blind separation into independent spatial components[J].Human Brain Mapping,1998,6:160-188.
  • 6Li Yu,Liu Jingsen.Mechanism and Improvement of Direct Anonymous Attestation Scheme[J].Journal of Henan University,2007,37(2):195-197.
  • 7Gossl C,Fahrmeir L.Bayesian Modeling of the Hemodynamic Response Function in BOLD fMRI[J].Neuro Image,2001,14:140-148.
  • 8吴义根,李可.SPM软件包数据处理原理简介——第一部分:基本数学原理[J].中国医学影像技术,2004,20(11):1768-1772. 被引量:26
  • 9McKeown MJ.Whole brain function MR imaging activation from a finger-tapping task examined with independent component analysis[J].American J Neuroradiol,2000,21:1629-1635.
  • 10Calhoun VD,Adali T,Pearlson GD,et al.A method for making group inference from functional MRI data using independent component analysis[J].Hum Brain Map,2001,14:140-151.

二级参考文献46

  • 1[1]Worsley K J, Marrett S, Neelin P et al. A unified statistical approach for determining significant signals in images of cerebral activation[J]. Human Brain Mapping. 1996,4: 58~ 73.
  • 2[2]Holmes A P, Blair R C, Watson J D et al. Nonparametric analysis of statistic images from functional mapping experiments [J]. Journal of Cerebral Blood Flow and Metabolism, 1996,16:7~22.
  • 3[3]Benjamini Y, Hochberg Y. Controlling the false discovery rate:A practical and powerful approach to multiple testing [ J].Journal of the Royal Statistical Society, 1995,B57: 289~ 300.
  • 4[4]Genovse C R, Lazar N A, Nichols T. Thresholding of statistical maps in functional neuroimaging: Using the false discovery rate [J]. NeuroImages ,2002,15,870~ 878.
  • 5[5]Clare S. Functional magnetic resonance imaging: Methods and applications [ D ]. Nottingham, England, University of Nottingham, 1997.
  • 6[6]Genovse C R. Statistical inference in functional magnetic resonance[R]. Technical Report 674, Department of Statistics,Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,1997.
  • 7Johansson BB. Brain Plasticity and stroke rehabilitation: the Willis lecture[J] . Stroke, 2000,31 (1): 223-230.
  • 8Cramer SC, Nelles G, Benson RR, et al. A functional MRI study of subjects recovered from hemiparetic stroke[J]. Stroke, 1997,28(12) :2518-2527.
  • 9Musso M, Weiller C, Kiebel S, et al. Training induced brain plasticity[J]. Brain, 1999, 122(9): 1781-1790.
  • 10Achten E, Jackson GD, Cameron JA, et al. Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions [J]. Radiology, 1999, 210 (2): 529-538.

共引文献34

同被引文献8

  • 1Friston KJ,Holmes AP,Worsley KJ,et al.Statistical parametric maps in functional imaging:a general linear approach[J].Hum Brain Mapping,1995,2(4):189-210.
  • 2Bullmore E,Fadili J,Maxim V,et al.Wavelets and functional magnetic resonance imaging of the human brain[J].NeuroImage,2004,23(1):S234-S249.
  • 3Wink AM,Roerdink JBTM.Denoising functional MR images:a comparison of wavelet denoising and Gaussian smoothing[J].IEEE Trans Med Imaging,2004,23(3):374-387.
  • 4Meyer FG.Wavelet-based estimation of a semiparametric generalized linear model of fMRI time-series[J].IEEE Trans Med Imaging,2003'22(3):315-322.
  • 5Van De Ville D,Seghier ML,Lazeyras F,et al.WSPM:wavelet-based statistical parametric mapping[J].Neuroimage,2007,37(4):1205-1217.
  • 6尧德中,罗程,雷旭,薛开庆,夏阳,赖永秀.脑成像与脑连接[J].中国生物医学工程学报,2011,30(1):6-10. 被引量:19
  • 7王永轩,邱天爽,刘蓉.基于小波分析方法的脑电诱发电位单导少次提取[J].中国生物医学工程学报,2011,30(1):34-39. 被引量:11
  • 8支联合,谭素敏,支羽光.基于快速平稳小波变换的特征提取方法分析fMRI数据[J].中国生物医学工程学报,2012,31(4):620-624. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部