期刊文献+

通过锌肥和适宜的水分管理提高水稻籽粒产量及锌积累量(英文) 被引量:1

Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management
原文传递
导出
摘要 研究目的:在生产高度集约化体系下,研究节水灌溉措施及锌肥对水稻产量及锌积累量的影响。创新要点:目前关于干湿交替能否对水稻增产仍存在争议,对锌含量及生物有效性也鲜有报道。因此,针对这些问题,本文系统地研究影响水稻产量及品质的两大限制性因素,即锌肥和灌溉方式对稻米锌生物有效性的影响。研究方法:采用盆钵试验模拟大田锌肥及水分管理方式,两种基因型、两种锌肥种类、两种水分管理,三个重复控制误差。利用电感耦合等离子体质谱(ICP-MS)测定微量元素锌含量,以精米中植酸含量表征锌生物有效性。重要结论:干湿交替在增加了稻米产量、锌含量及积累量方面效果显著。干湿交替结合土施硫酸锌肥可以作为水稻生产体系中获得高产、高锌、高生物有效性的农艺措施。 Zinc(Zn) deficiency and water scarcity are major challenges in rice(Oryza sativa L.) under an intensive rice production system.This study aims to investigate the impact of water-saving management and different Zn fertilization source(ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain.Different water managements,continuous flooding(CF),and alternate wetting and drying(AWD) were applied during the rice growing season.Compared with CF,the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice.Grain yield of genotypes(Nipponbare and Jiaxing27),on the average,was increased by 11.4%,and grain Zn concentration by 3.9% when compared with those under a CF regime.Zn fertilization significantly increased Zn density in polished rice,with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA,especially under an AWD regime.Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization.The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.
出处 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2014年第4期365-374,共10页 浙江大学学报(英文版)B辑(生物医学与生物技术)
基金 supported by the HarvestPlus-China Program(No.8271) the Fundamental Research Funds for the Central Universities(No.2013FZA6005) the National Key Technology R&D Program of China(No.2012BAC17B02)
关键词 水稻 干湿交替 施肥 Rice Alternate wetting and drying Soil fertilization Zinc
  • 相关文献

参考文献35

  • 1Alloway, B.J., 2009. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health, 31(5):537-548. [doi: 10.1007/s10653-009-9255-4].
  • 2Be]der, P., Bouman, B.A.M., Cabangon, R., et al., 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manage., 65(3):193-210.
  • 3[doi:lO.lO16/j.agwat.2003.09.002] Bouman, B.A.M., Hengsdijk, H., Hardy, B., et al., 2002. Water-Wise Rice Production. International Rice Research Institute, Los Bafios, Philippines, p.89-102.
  • 4Bouman, B.A.M., Lampayan, R.M., Tuong, T.P., 2007. Water Management in Irrigated Rice: Coping with Water Scarcity. International Rice Research Institute, Los Bafios, Philippines, p. 17-32.
  • 5Cakmak, I., 2008a. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil, 302(1-2): 1-17. [doi: 10.1007/sl 1104-007-9466-3].
  • 6Cakmak, I., 2008b. Zinc deficiency in wheat in Turkey. ln: Alloway, B. (Ed.), Micronutrient Deficiencies in Global Crop Production. Springer Netherlands, p.181-200. [doi: 10.1007/978-1-4020-6860-77].
  • 7Chapagain, T., Yamaji, E., 2010. The effects of irrigationmethod, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy Water Environ., 8(1):81-90. [doi: 10.1007/s10333- 009-0187-5].
  • 8Chasapis, C.T., Loutsidou, A.C., Spiliopoulou, C.A., et al., 2012. Zinc and human health: an update. Arch. Toxicol., 86(4):521-534. [doi:10.1007/s00204-011-0775-1].
  • 9Fitzgerald, M.A., Mccouch, S.R., Hall, R.D., 2009. Not just a grain of rice: the quest for quality. Trends Plant Sci., 14(3):133-139. [doi: 10.1016/j.tplants.2008.12.004].
  • 10Gao, X., Zou, C., Fan, X., et al., 2006. From flooded to aerobic conditions in rice cultivation: consequences for zinc uptake. Plant Soil, 280(1-2):41-47. [doi: 10.1007/sl 1104- 004-7652-0].

同被引文献29

  • 1温娜,王景安,刘仲齐.利用AMMI模型分析稻米镉含量的基因型与环境互作效应[J].农业环境科学学报,2015,34(5):817-823. 被引量:23
  • 2GB/T5009.15-2003,食品中镉的测定[S].
  • 3GB15618-1995.土壤环境质量标准[S].[S].,..
  • 4刘铮,朱其清,唐丽华,等.我国缺乏微量元素的土壤及其区域分布[J].土壤学报,1982,19(3):209-223.
  • 5Roy M , McDonald L M. Metal uptake in plants and health riskassessments in metal-contaminated smelter soils [ J ]. LandDegradation & Development,2015 , 26(8) ; 785-792.
  • 6Chaney R L, Reeves P G, Ryan Jk, et al. An improvedunderstanding of soil Cd risk to humans and low cost methods tophytoextract Cd from contaminated soils to prevent soil Cd risk[J]. Biometals, 2004,17(5) : 549-553.
  • 7Hall J L, Williams L E. Transition metal transporters in plants[J]. Journal of Experimental Botany, 2003 , 54 ( 393 ) ; 2601 -2613.
  • 8Yang J X,Wang L Q , Wei D P, et al. Foliar spraying and seedsoaking of zinc fertilizers decreased cadmium accumulation incucumbers grown in Cd-contaminated soils [ J ]. Soil andSediment Contamination : An International Journal, 2011,20(4): 400-410.
  • 9Cherif J, Derbel N, Nakkach M, et al. Spectroscopic studies ofphotosynthetic responses of tomato plants to the interaction of zincand cadmium toxicity [ J ]. Journal of Photochemistry andPhotobioiogy B : Biology, 2012 , 111 : 9-16.
  • 10Tkalec M, Stefani6 P P,Cvjetko P, et al. The effects ofcadmium-zinc interactions on biochemical responses in tobaccoseedlings and adult plants [ J ]. PLoS One, 2014,9(1):e87582.

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部