期刊文献+

多目标直觉模糊集矩阵对策的求解方法 被引量:3

The method for solving multiobjective matrix games with payoffs of intuitionistic fuzzy sets
原文传递
导出
摘要 提出支付值为直觉模糊集的多目标矩阵对策的定义及其解概念,通过建立一对辅助线性或非线性规划模型,计算得到局中人的最优策略.数值实例表明了所提方法的有效性和实用性.所提出的多目标直觉模糊集矩阵对策理论与方法既是对模糊对策理论方法的扩展和补充,也可为解决带有直觉模糊集信息的竞争性多目标对策问题提供新的途径. The definition of multiohjective matrix games with payoffs of intuitionistic fuzzy sets and the concept of its solutions are given. The optimal strategies of two players can be obtained by solving a pair of auxiliary linear or nonlinear programming models. A numerical example shows that the pro-posed method is effective and practical. The concept and methodology of muhiobjective matrix games with payoffs of intuitionistic fuzzy set are not only an extension of those of fuzzy games, but also pro-vide a new route for solving muhiobjective matrix games with information of intuitionistic fuzzy sets.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期213-218,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(71231003 71171055) 教育部新世纪优秀人才支持计划(NCET-10-0020) 高等学校博士学科点专项科研基金资助项目(201135141100090) 福建省社会科学规划项目(2012C022)
关键词 直觉模糊集 多目标矩阵对策 线性规划 非线性规划 intuitionistic fuzzy set multiobjective matrix game linear programming nonlinearprogramming
  • 引文网络
  • 相关文献

参考文献5

  • 1Atanassov K. Iutuitionistic fuzzy sets[ J]. Fuzzy Sets and Systems, 1986, 20:87 -96.
  • 2Li Deng -feng. Lexicographic method for matrix games with payoffs of triangular fuzzy numbers [ J ]. International Journal of Un- certainty, Fuzziness and Knowledge - Based Systems, 2008, 16 (3) : 371 - 389.
  • 3Li Deng - feng, Nan Jiang - xia. A nonlinear programming approach to matrix games with payoffs of Atanassov' s intuitionistic fuzzy sets [J]. International Journal of Uncertainty, Fuzziness and Knowledge - Based Systems, 2009, 17 (4) : 585 - 607.
  • 4南江霞,李登峰,张茂军.支付值为区间直觉模糊集的矩阵对策的线性规划求解方法[J].控制与决策,2010,25(9):1318-1323. 被引量:8
  • 5Li Deng - feng. Mathematical - programming approach to matrix games with payoffs represented by Atanassov' s interval - valued intuitionistic fuzzy sets [ J ]. IEEE Transactions on Fuzzy Systems, 2010, 18 (6) : 1 112 - 1 128.

二级参考文献9

  • 1Campos L. Fuzzy linear programming models to solve fuzzy matrix games[J]. Fuzzy Sets and Systems, 1989, 32(3): 275-289.
  • 2Bector C R, Chandra S, Vijay V. Matrix games with fuzzy goals and fuzzy linear programming duality[J]. Fuzzy Optimization and Decision Making, 2004, 3(3): 255-269.
  • 3Bector C R, Chandra S, Vijay V. Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs[J]. Fuzzy Sets and Systems, 2004, 146(2): 253-269.
  • 4Li D F. A fuzzy multiobjective approach to solve fuzzy matrix games [J]. J of Fuzzy Mathematics, 1999, 7(4): 907- 912.
  • 5Nishizaki I, Sakawa M. Fuzzy and multiobjective games for conflict resolution[M]. Heidelberg: Physica-Verleg, 2001.
  • 6Atanassov K T. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 7Atanassov K T. Intuitionistic fuzzy sets [M]. Heidelberg: Springer-Verlag, 1999.
  • 8Atanassov K T, Gargov G. Interval-valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989, 31 (3): 343- 349.
  • 9Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function [J]. European J Operation Research, 1990, 48(2): 219-225.

共引文献7

同被引文献15

引证文献3

二级引证文献3

;
使用帮助 返回顶部