摘要
提出支付值为直觉模糊集的多目标矩阵对策的定义及其解概念,通过建立一对辅助线性或非线性规划模型,计算得到局中人的最优策略.数值实例表明了所提方法的有效性和实用性.所提出的多目标直觉模糊集矩阵对策理论与方法既是对模糊对策理论方法的扩展和补充,也可为解决带有直觉模糊集信息的竞争性多目标对策问题提供新的途径.
The definition of multiohjective matrix games with payoffs of intuitionistic fuzzy sets and the concept of its solutions are given. The optimal strategies of two players can be obtained by solving a pair of auxiliary linear or nonlinear programming models. A numerical example shows that the pro-posed method is effective and practical. The concept and methodology of muhiobjective matrix games with payoffs of intuitionistic fuzzy set are not only an extension of those of fuzzy games, but also pro-vide a new route for solving muhiobjective matrix games with information of intuitionistic fuzzy sets.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第2期213-218,共6页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学基金资助项目(71231003
71171055)
教育部新世纪优秀人才支持计划(NCET-10-0020)
高等学校博士学科点专项科研基金资助项目(201135141100090)
福建省社会科学规划项目(2012C022)
关键词
直觉模糊集
多目标矩阵对策
线性规划
非线性规划
intuitionistic fuzzy set
multiobjective matrix game
linear programming
nonlinearprogramming