期刊文献+

双连续余弦函数的Cesàro遍历定理

Cesàro ergodic theorems for bi-continuous cosine functions
下载PDF
导出
摘要 Banach空间算子半群的应用研究中,范数意义下强连续这样的要求较强,在实际中发现存在一些半群并不是强连续的。基于双连续半群的概念,给出双连续余弦函数的概念及性质,进而对双连续余弦函数的Cesàro遍历的定义及性质进行研究,得到在拓扑意义下的双连续余弦函数的Cesàro遍历的若干结果。 For many applications of operator semigroups on Banach spaces, strong continuity with respect to the norm is a too strong requirement. In fact, there exists a class of semigroups of operators which the usual strong continuity fails to hold. Based on the concept of bi-continuous operators, the con- cept and main properties of bi-continuous cosine function were introduced, and then the description of the main properties and the convergence of Cesaro ergodicity for bi-continuous cosine functions were studied. More precisely, some results on the Cesiaro ergodicity the topology τ are proved. for bi-continuous cosine functions with respect to
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第2期198-203,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10671205) 中央高校基本科研业务资助项目(3142014039 3142013039) 华北科技学院重点学科资助项目(HKXJZD201402)
关键词 双连续余弦函数 Cesaro遍历 生成元 bi-continuous cosine functions Cesaro ergodicity generator
  • 相关文献

参考文献12

  • 1KUHNEMUND F.A Hille-Yosida theorem for bi-continuous semigroups[J].Semigroup Forum, 2003, 67 (2):205-225.
  • 2ALBANESE A A, MANGINO E.Trotter-Kato theorems for hi-continuous semigroups and applications to Feller semigroups [J].Journal of Mathe-matical Analysis and Applications, 2004, 289 (2):477-492.
  • 3JARA P.Rational approximation schemes for hi-continuous semigroups[J].Journal of Mathematical Analysis and Applications, 2008, 344(2):956-968.
  • 4王文娟,孙国正.局部有界的双连续C-半群及其逼近定理[J].数学杂志,2007,27(1):31-37. 被引量:10
  • 5李慧敏,宋晓秋,赵月英.双连续α次积分C余弦函数的生成定理[J].中国矿业大学学报,2010,39(3):465-470. 被引量:6
  • 6SHAW S Y.Mean ergodic theorems and linear functional equations[J].Journal of Functional Analysis, 1989, 87 (2):428-441.
  • 7LIZAMA C.A mean ergodic theorem for resolvent operators[J].Semigroup Forum, 1993, 47 (1):227-230.
  • 8SHAW S Y.Ergodie theorems and approximation theorems with rates [J].Taiwan Residents Journal of Mathematics, 2000, 4 (3):365-383.
  • 9LI Miao, HUANG Fa-lun, CHU Xiao-ling.Ergodic theory for C-semigroup[J].Journal of Sichuan University (Nature Science Edition), 1999,36 (4):645-651.
  • 10肖体俊,梁进,高建伟.C-cosine算子函数的遍历性[J].应用泛函分析学报,1999,1(2):97-107. 被引量:4

二级参考文献35

  • 1HUANG FALUN,HUANG TINGWEN.LOCAL C-COSINE FAMILY THEORY AND APPLICATION[J].Chinese Annals of Mathematics,Series B,1995,16(2):213-232. 被引量:3
  • 2郑权,雷岩松.指数有界的C余弦算子函数[J].系统科学与数学,1996,16(3):242-252. 被引量:19
  • 3宋晓秋,刘咸卫.C半群的两个结果[J].中国矿业大学学报,1996,25(1):121-126. 被引量:10
  • 4WEBB G F. A representation formular for strongly continuous cosine families[J]. Aequationes Mathe- maticae,1980(21) : 251-256.
  • 5KUO Chung-cheng. On a-times intergrated C-cosine functions and abstract Caucby problem[J]. Journal of Mathematical Analysis and Applications, 2006(313) : 142-162.
  • 6WANG Sheng-wang, HUANG Zheng-you. Strong continuous integrated C-cosine operator function[J]. Studia Mathematica, 1997(126) : 273-289.
  • 7KUHNEMUND F. A Hille-Yosida theorem for bicontinuous semigroups[J]. Semigroup Forum, 2003, 67(2) : 205-225.
  • 8LI Yuan-chuan, SHAW Sen-yen. N-times intergrated C-semigroup and the abstract Cauchy problem [J]. Taiwan Residents Journal of Mathematics, 1997 (1): 75-102.
  • 9DELAUBENFELS R. C-semigroups and the Cauchy problemp[J]. Journal of Functional Analysis, 1993 (111): 44-61.
  • 10KUHNEMUND F. Bi-continuous semigroups on space with two topologies: theory and applications [D]. Tubingen: University of Tubingen, 2001.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部