期刊文献+

城市道路短期交通流预测VHSSA模型 被引量:8

VHSSA Model for Predicting Short-term Traffic Flow of Urban Road
下载PDF
导出
摘要 针对出行者出行时对交通信息预报以及动态路径规划的要求,对路段的历史交通流时间序列数据进行了研究,利用城市路段交通流的周期相似性特征提出了基于纵横序列相似性的短期交通流预测VHSSA模型,该模型克服了以往预测模型只考虑纵向时间序列周期性相似的缺陷,将全时间序列数据进行小波变换后分解为反映基本变化规律的基序列和反映波动变化情况的波动序列,既可只进行基序列预测,也可通过置信区间对波动序列进行修正,再与基序列叠加进行全序列预测。经试例验证,VHSSA模型和基于纵向序列相似性的VSSA模型分别与实测序列的基序列和全序列进行比对,VHSSA模型的预测效果总体优于VSSA模型,误差可满足实际要求。 In order to meet the need of accurate traffic prediction and dynamic route planning, we proposed a short-term traffic predication model VHSSA based on the similarity of vertical and horizontal sequence by analyzing the historical traffic time series data and the cyclic similarity characteristics of traffic volume of urban road. The model can overcome the deficiency of the traditional models which only focus on the vertical cyclic sequence similarity. The full-time data are transformed into basis sequence which can reflect the basis characteristics and fluctuant sequence which can reflect the variation characteristics by using wavelet transformation function. By this transformation, both basis sequence prediction and complete sequence prediction can be achieved. When doing complete sequence prediction, we corrected the fluctuant sequence based on the confidence interval, overlapped it with the basis sequence. The verification experiments are carried out to compare the practical basis sequence and complete sequence of the VHSSA model and the VSSA model which consider only the vertical sequence similarity. The results show that the prediction result of the former is better than that of the latter, the error probability of the former is lower than that of the latter. The prediction error can meet actual requirement.
作者 袁健 范炳全
出处 《公路交通科技》 CAS CSCD 北大核心 2014年第5期135-140,146,共7页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金项目(51008196) 上海市重点学科项目(S30504)
关键词 交通工程 VHSSA模型 周期相似性 短期交通流预测 小波分析 traffic engineering VHSSA model similarity of time cycle short-term traffic flow prediction wavelet analysis
  • 相关文献

参考文献11

  • 1陆锋,郑年波,段滢滢,张健钦.出行信息服务关键技术研究进展与问题探讨[J].中国图象图形学报,2009,14(7):1219-1229. 被引量:22
  • 2WILLIAMS B M, HOEL L A. A Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA process : A Theoretical Basis and Empirical Results [ J ]. Journal of Transportation Engineering, 2003, 129 (6) : 664 - 672.
  • 3CHEN Chen-yi, WANG Yin, LI Li , et al. The Retrieval of Intra-day Trend and Its Influence on Traffic Prediction [ J ]. Transportation Research Part C: Emerging Technologies, 2012, 6 (22) : 103 - 118.
  • 4胡家兴,陈燕,张立东.基于混沌神经网络的交通流预测算法[J].济南大学学报(自然科学版),2012,26(2):152-155. 被引量:6
  • 5刘潭秋,孙湘海,钟翔.基于三制度SETAR模型的短期交通流预测[J].公路交通科技,2010,27(10):122-127. 被引量:3
  • 6姚智胜,熊志华,邵春福.交通流短时预测的相关性研究[J].交通运输系统工程与信息,2010,10(2):117-121. 被引量:7
  • 7HONG W C. Traffic Flow Forecasting by Seasonal SVR with Chaotic Simulated Annealing Algorithm [ J ]. Neurocomputing, 2011, 74 (12/13) : 2096 -2107.
  • 8MIN W, WYNTER L. Real-time Road Traffic Prediction with Spatio-temporal Correlations [ J ]. Transportation Research Part C: Emerging Technologies, 2011, 19 (4) : 606 -616.
  • 9ZHENG Zu-duo, AHN S, CHEN Dan-jue, et al. Applications of Wavelet Transform for Analysis of Freeway Traffic : Bottlenecks, Transient Traffic, and Traffic Oscillations [ J ]. Transportation Research Part B: Methodological, 2011, 45 (2): 372-384.
  • 10沈国江,王啸虎,孔祥杰.短时交通流量智能组合预测模型及应用[J].系统工程理论与实践,2011,31(3):561-568. 被引量:57

二级参考文献98

共引文献87

同被引文献47

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部