期刊文献+

计算文本的情感描述值的算法 被引量:1

An Algorithm for Computing Sentiment Description Value of Text
下载PDF
导出
摘要 随着互联网信息的高速发展,越来越多的人参与到信息的制造者队伍中,对于信息处理提出了更高的要求。计算文本的情感描述值对于衡量文本的极性信息具有重要的意义。首先对文本内容进行预处理,挑选出可以决定文本极性的句子;然后对各个子句进行情感描述值的计算;最后将子句的情感进行综合计算,得出文本的情感描述值。并且对文本长度、句法结构等因素进行了综合分析。实验结果表明,采用该算法计算文本信息具有较高的准确率和速度,对于大规模处理流数据情况下的情感信息值的计算具有较好的适用性。 Along with the rapid development of Internet information, more and more people join in as information maker and this has made a higher requirement for information processing. It’s important to calculate the sentiment description value of the text for evaluating the polarity of the text. Firstly, this paper preprocesses the text to choose the sentences that may best determine the polarity. Secondly, it calculates the sentiment description value of each sub-sentence. Finally, the total value of the combined results is got. This paper also conducts a comprehensive analysis of the elements that may influence the results, such as the length of the text, syntax structure, etc. The experimental results show that the proposed algorithm gets higher accuracy and higher speed, and has better applicability in the situation of large scale stream data environment.
出处 《计算机科学与探索》 CSCD 2014年第5期608-613,共6页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61035003 61072085 61202212 60933004 国家重点基础研究发展计划(973计划)No.2013CB329502 国家高技术研究发展计划(863计划)No.2012AA011003 国家科技支撑计划No.2012BA107B02~~
关键词 情感描述值 情感分类 流数据 sentiment description value sentiment classification stream data
  • 相关文献

参考文献8

二级参考文献96

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 3Hatzivassiloglou V, McKeown K R. Predicting the Semantic Orientation of Adjectives [A]//Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C]. 1997:174-181.
  • 4Peter T, Michael L. Measuring Praise and Criticism: Inference of Semantic Orientation from Association [J]. ACM Transactions on Information Systems, 2003,21 (4) : 315-346.
  • 5Peter D T. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[C]//Proceeding of the Association for Computational Linguistics 40th Anniversary Meeting. New Brunswick, N. J. , 2002.
  • 6Pang Bo, Lee Lillian, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques [C] //Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. 2002:79-86.
  • 7Yang Y, Pedersen J O. A comparative study on feature selection in text categorization [C] //Proc of the 14th Int Conf on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1997:412-420.
  • 8Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques [C] //Proc of the Conf on Empirical Methods in Natural Language Processing (EMNLP). Philadelphia, PA~ Association for Computaional Linguistics, 2002:79-86.
  • 9Wang Suge, Wei Yingjie, Li Deyu, et al. A hybrid method of feature selection for Chinese text sentiment classification[C] //Proc of the 4th Int Conf on Fuzzy Systems and Knowledge Discovery. Los Alamitos, CA: IEEE Computer Society, 2007:435-439.
  • 10Tan Songbo, Zhang Jin. An empirical study of sentiment analysis for Chinese documents [J]. Expert Systems with Application, 2008, 34(4):2622-2629.

共引文献609

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部