期刊文献+

材料基因组计划简介 被引量:57

A perspective on the Materials Genome Initiative
下载PDF
导出
摘要 美国总统奥巴马明确指出"材料基因组计划"(TheMaterialsGenomeInitiative,MGI)的总目标是"将先进材料的发现、开发、制造和使用的速度提高一倍"。白宫科技政策办公室在2011年6月发布的相应的白皮书《具有全球竞争力的材料基因组计划》中阐述了材料创新基础设施的三个平台:计算工具平台、实验工具平台和数字化数据(数据库及信息学)平台。材料基因组计划/工程不仅仅是要开发快速可靠的计算方法和相应的计算程序,而且也要开发高通量的实验方法来对理论进行快速验证并为数据库提供必需的输入,还要建立普适可靠的数据库和材料信息学工具,以加速新材料的设计和使用。材料基因组计划/工程旨在材料领域建立一个新的以理论模拟和预测优先、实验验证在后的"文化",从而取代现有的以经验和实验为主的材料研发的理念。 U.S. President Obama introduced the Materials Genome Initiative (MGI) and clearly stated that the goal of MGI is "to discover, develop, manufacture, and deploy advanced materials at twice the speed than is possible today." The pertinent whitepaper "Materials Genome Initiative for Global Competitiveness" released by the White House Office of Science and Technology Policy in June 2011 outlines the Materials Innovation Infrastructure as consisting of three platforms: computational tools, experimental tools and digital data. The MGI will accelerate materials design and deployment by: ①developing effective and reliable computational methods and software tools, ②developing high-throughput experimental methodologies to validate theories and to provide reliable experimental data to the materials databases, and ③establishing reliable and widely applicable databases and materials informatics tools. The ultimate intent of MGI is to usher in a new paradigm/culture of materials research and innovation where materials design is conducted by up-front simulations/predictions followed by key validation experiments in contrast to the current practice that is heavily based on experimental iterations and experiences.
作者 赵继成
出处 《自然杂志》 北大核心 2014年第2期89-104,共16页 Chinese Journal of Nature
关键词 材料基因组计划 材料设计 集成计算材料工程 Materials Genome Initiative, materials design, integrated computational materials engineering (ICME)
  • 相关文献

参考文献185

  • 1Materials Genome Initiative for Global Competitiveness [EB/OL].2001. http://www.whitehouse.gov/sites/default/files/microsites/ostp/ materials genome initiative-final.pdf.
  • 2National Research Council. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security [M/OL]. Washington, DC: The National Academies Press, 2008. http://www.nap.edu/catalog. php?record_id= 12199.
  • 3“材料科学系统工程”香山科学会议第S14次学术讨论会[EB/OL],(2011-12-07)http://159.226.97.16/ConfRead.aspx?ItemID=1998.
  • 4COLLINS F S, MORGAN M, PATRINOS A. The human genome project: lessons from large-scale biology [J]. Science, 2003, 300: 286- 290.
  • 5FISCHER C, TIBBETTS K J, MORGAN D, et al. Predicting crystal structure by merging data mining with quantum mechanics [J]. Nature Mater, 2006, 5:641-646.
  • 6CEDER G, MORGAN D, FISCHER C, et al. Data-mining-driven quantum mechanics for the prediction of structure [J]. MRS Bull, 2006, 31: 981-985.
  • 7CURTAROLO S, MORGAN D, CEDER G. Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys [J]. Calphad, 2005, 29:163-211.
  • 8HART G L W, BLUM V, WALORSKI M J, et al. Evolutionary approach for determining first principles Hamiltonians [J]. Nature Mater, 2005, 4: 391-394.
  • 9WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle- swarm optimization [J]. Phys Rev B, 2010, 82:094116-1-094116-8.
  • 10WANG Y, LV J, ZHU L, et al. CALYPSO: A method for crystal structure prediction [J]. Comp Phys Commun, 2012, 183: 2063-2070.

同被引文献840

引证文献57

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部