期刊文献+

甘蔗渣高温同步糖化发酵制取燃料乙醇研究 被引量:5

BIO-ETHANOL PRODUCTION BY HIGH TEMPERATURE SIMULTANEOUS SACCHARIFICATION AND FERMENTATION OF BAGASSE
下载PDF
导出
摘要 研究添加不同量纤维素酶对甘蔗渣酶解效果的影响,结果表明葡萄糖浓度随加酶量增加而增加,最优的添加量为30FPU/(g原料)。利用克鲁维氏酵母(Kluyveromyces marxianus)NCYC 587,在42℃下进行甘蔗渣高温同步水解糖化发酵实验,发现额外添加β-葡萄糖苷酶能有效提高乙醇的质量浓度,经48h发酵,添加30IU/(g葡聚糖)的β-葡萄糖苷酶可提高乙醇浓度30%。通过分批补料方式提高固体浓度至20%,比较SSF和SHF两种工艺,发现前者经72h可产生36.2g/L乙醇,发酵效率为0.50g/(L·h),后者经120h可获得41.2g/L乙醇,发酵效率为0.34g/(L·h)。 The effects of adding cellulase on sugarcane bagasse hydrolysation and β-glucosidase on ethanol concentration were investigated. It was found that the concentration of concentration of cellulase, and 30FPU/g substrate was the optimum glucose was improved with increasing feeding feeding concentration. Thermotolerant yeast, Kluyveromyces marxianus NCYC 587, was used in the simultaneous saccharification and fermentation (SSF) of alkali pre-treated sugarcane bagasse. After 48 hours of fermentation at 42℃, 30% of ethanol was obtained with the adding amount of β-glucosidase of 30IU/g glucan, which meant that the additional adding of β-glucosidase would improve ethanol concentration efficiently. The content of dry matter was increased to 20% through fed-batch enzymatic hydrolysis, and two processes, simultaneous saccharification & fermentation and separate hydrolysis and fermentation were compared. It was found that the ethanol concentration of SSF process could attain 36. 2g/L after 72 hours of fermentation and the ethanol productivity was 0. 50g/( L·h), and for comparison, the SHF process could attain 41.2g/L after 120 hours of fermentationm and the ethanol productivity was about O. 34g/(L·h).
出处 《太阳能学报》 EI CAS CSCD 北大核心 2014年第4期692-697,共6页 Acta Energiae Solaris Sinica
基金 国家科技支撑计划(2011BAD22B01) 国家自然科学基金(21176237) 中国科学院知识创新工程重大项目(KSCX1-YW-11-A3)
关键词 甘蔗渣 Β-葡萄糖苷酶 高温同步糖化发酵 分步糖化发酵 乙醇 sugarcane bagasse β-glucosidase high-temperature simultaneous saccharification and fermentation separate hydrolysis and fermentation ethanol
  • 相关文献

参考文献12

  • 1严明奕,莫炳荣.甘蔗渣的综合利用——赴巴西考察报告[J].广西轻工业,2001,17(1):4-9. 被引量:20
  • 2Hong Juan,Ladisch Michael R,Gong Chenshung,et al.Combined product and substrate inhibition equation for cellobiase [J].Biotechnology and Bioengineering,1981,23(12):2779-2788.
  • 3Takagi M,Abe S,Suzuki S,et al.A method for production of alcohol directly from cellulose using cellulase and yeast [A].Proceedings of Bioconversion of Cellulosic Substances into Energy,Chemicals and Microbial Protein [C].New Delhi,India,1977,551-571.
  • 4Wyman C E.Ethanol from lignocellulosic biomass:Technology,economics,and opportunities [J].Bioresource Technology,1994,50(1):3-15.
  • 5Hao J T,Chen S G,Yang S Y.SC-SSF DOA estimation with mutual coupling presence [A].Proceedings of the 2004 China-Japan Joint Meeting on Microwaves[C].Harbin,China,2004,206-209.
  • 6Sluiter A,Hames B,Ruiz R,et al.Determination of sugars,byproducts,and degradation products in liquid fraction process samples[R].Technical Report NREL/TP-510-42623,2008.
  • 7Sluiter A,Ruiz R,Scarlata C,et al.Determination of extractives in biomass [R].Technical Report NREL/TP-510-d2619,2008.
  • 8Sluiter Abh,Ruiz R,Scarlata C,et al.Determination of structural carbohydrates and lignin in biomass [R].Laboratory Analytical Procedure(LAP)Technical Report NREL,2008.
  • 9张小梅,魏东.高效降解甘蔗渣的预处理技术新进展[J].纤维素科学与技术,2008,16(2):59-65. 被引量:13
  • 10Hari Krishna S,Janardhan Reddy T,Chowdary G V.Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast [J].Bioresource Technology,2001,77(2):193-196.

二级参考文献41

共引文献31

同被引文献57

  • 1熊艳,吴学文,蒋孟良.HPLC测定鲜竹沥口服液中愈创木酚的含量[J].中国中药杂志,2007,32(8):747-748. 被引量:20
  • 2Masoodi R, E1-Hajjar R F, Pillai K M, et al. Mechanical character- ization of cellulose nanofiber and bio-based epoxy composite [ J ]. Materials and Design ,2012,36:570 - 576.
  • 3Tanja Zimmermann, Nicolae Bordeanu, Esther Strub. Properties of nanofibrillated cellulose from different raw materials and its rein- forcement potential[ J ]. Carbohydrate Polymers, 2010,79 : 1086 - 1093.
  • 4Nakagaito A N, Yano H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites [ J ]. Ap- plied Physics A ,2004,78:547 - 552.
  • 5Youssef Habibi,Lucian A Lucia, Orlando J Rojas. Cellulose nano- crystals : Chemistry, self-assembly, and applications [ J]. Chem Rev, 2010,110:3479 - 3500.
  • 6Okahisa, Yoko, Kentaro Abe, Masaya Nogi, et al. Effects of deligni- fication in the production of plant-based cellulose nanofibers for op- tically transparent nanocomposites [ J ]. Composites Science and Technology,2011,71 (10) : 1342 - 1347.
  • 7Abraham E, Deepa B, Pothan L A, et al. Extraction of nanocellulosefibrils from lignocellulosic fibres : A novel approach [ J ]. Carbohy- drate Polymers,2011,86(4) :1468 -1475.
  • 8Gonz~ez Alriols M ,Tejado A, Blanco M ,et al. Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process [J]. Chemical Engi- neering Journal,2009,148( 1 ) :106 - 114.
  • 9Sun J X, Sun X F, Zhao H, et al. Isolation and characterization of cellulose from sugarcane Bagasse [ J ]. Polymer Degradation and Sta- bility ,2004,84:331 - 339.
  • 10Cherian, Bibin Mathew, Alcides Lopes Lei~o,et al. Isolation of nano- cellulose from pineappleLeaf fibres by steam explosion [ J ]. Carbo- hydrate Polymers,2010,81 (3) : 720 - 725.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部