期刊文献+

连续跟踪状态下基于可分性特征的目标优化分类 被引量:1

Object classification based on discriminable features and continuous tracking
下载PDF
导出
摘要 针对拥塞复杂监控场景中目标的准确分类问题,提出了一种连续跟踪状态下基于可分性特征的目标优化分类方法。首先对整个场景中所有目标提取简单的颜色、形状和位置特征建立初始目标匹配,利用目标的运动方向及速率预测下帧中优先搜索区域以提高目标匹配效率,减少运算量,并对未建立对应关系的遮挡目标采用外观特征模型进行再匹配。为了提高目标分类的准确率,系统利用连续跟踪状态下目标特征的不间断提取和匹配,根据匹配最大概率决定最优分类结果。通过多种场景的实验结果表明,该方法的分类准确度比未利用连续跟踪信息的方案获得了更好分类准确度,平均达到了97%,有效改善了复杂场景中目标分类精度。 Aiming at object classification problem in heavily crowded and complex visual surveillance scenes, a real-time object classification approach was proposed based on discriminable features and continuous tracking. Firstly rapid features matching including color, shape and position was utilized to build the initial target correspondence in the whole scene, in which motion direction and velocity of the moving target were used to predict the preferable searching area in the next frame to accelerate the target matching process. And then the appearance model was utilized to rematch the occluded object without establishing the correspondence. In order to enhance the classification precision, the final object classification results were determined by the maximum probability of continuous object feature extraction and classification according to the tracking results. Experimental results show that the proposed method gets better classification precision compared with the method which do not utilized the continuous tracking, and its correct rate averagely reaches 97%. The new scheme effectively improves the performance of object classification in the complex scenes.
出处 《计算机应用》 CSCD 北大核心 2014年第5期1275-1278,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61001170)
关键词 目标分类 目标跟踪 特征提取 特征匹配 object classification object tracking feature extraction feature matching
  • 相关文献

参考文献14

  • 1LIU J,WANG Y,ZHANG Z,et al.Multi-view moving object classification via transfer learning[C]//Proceedings of the 1st Asian Conference on Pattern Recognition.Piscataway:IEEE Press,2011:259-263.
  • 2LUO Y,TAO D,GENG B,et al.Manifold regularized multitask learning for semi-supervised multilabel image classification[J].IEEE Transactions on Image Processing,2013,22(2):523-536.
  • 3GOMEZ-CHOVA L,CAMPS-VALLS G,BRUZZONE L,et al.Mean map kernel methods for semi-supervised cloud classification[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(1):207-220.
  • 4GONG Y C,LIU F,CHEN C.Graph-based semi-supervised learning with manifold preprocessing for image classification[C]//Proceedings of the 2008 IEEE International Conference on Systems,Man and Cybernetics.Piscataway:IEEE Press,2008:391-395.
  • 5白艺娜,汪西莉.结合均值漂移的基于图的半监督图像分类[J].计算机应用,2013,33(9):2606-2609. 被引量:4
  • 6LIU W,HE J,CHANG S F.Large graph construction for scalable semi-supervised learning[EB/OL].[2012-10-10].http://rnachinelearning.wustl.edu/mlpapers/paper_files/icml2010_LiuHC10.pdf.
  • 7HU W,TAN T,WANG L,et al.A survey on visual surveillance of object motion and behaviors[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2004,34(3):334-352.
  • 8姜永兵,彭启民.目标识别中的稳定图像特征组合发掘[J].中国图象图形学报,2012,17(1):99-105. 被引量:1
  • 9李占闯,肖国强,代毅,邱开金.基于SVM输出概率和后置滤波的运动目标分类[J].计算机应用研究,2010,27(2):778-780. 被引量:3
  • 10VIOLA P,JONES M J,SNOW D.Detecting pedestrians using patterns of motion and appearance[J].International Journal of Computer Vision,2005,63(2):153-161.

二级参考文献44

  • 1肖小玲,李腊元,张翔.一种多类支持向量机概率建模新方法[J].计算机工程,2006,32(20):28-29. 被引量:5
  • 2MOREIRA M, MAYORAZ E. Improved pairwise coupling classification with correcting classifierstes [ C ]//Proc of the lOth European Conference on Machine Learning. London: Springer-Verlag, 1998: 160-171.
  • 3HASTIE T, TIBSHIRANI R. Classification by pairwise coupling [J]. The Annals of Statistics,1998, 26( 1 ) :451-471.
  • 4HARALICK R M, SHANMUGAM K, DISTEIN I. Textural features for image classification [ J]. IEEE Trans on Systems, Man and Cybemstics,1973, 3(6) :610-621.
  • 5PLATT J C. Probabilities for SV machinestes [ C ]//Proc of Advances in Large Margin Classifiers. Cambridge: MIT Press, 2000:61-74.
  • 6MITRA J K. Digital signal processing: a computer-based approach [M].2nd ed. 孙洪,余翔宇,译.北京:电子工业出版社,2005.
  • 7NGUYEN H T, JI Qiang, SMEULDERS A W M. Spatio-temporal context for robust muhitarget tracking[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007, 29( 1 ) :52-64.
  • 8Jamieson M, Dickinson S, Stevenson S, et al. Using language to drive the perceptual grouping of local image features [ C ] // Proceeding IEEE Conference on Computer Vision and Recognition. New York, USA : IEEE Press ,2006 : 2102-2019.
  • 9Yuan J S, Wu Y, Yang M. Discovery of collocation patterns : from visual words to visual phrases [ C ]//Proceeding IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE Press ,2007 : 1-8.
  • 10Zheng Y T, Zhao M, Neo S Y, et al. Visual synset: towards a higher-level visual representation [ C ] //Proceeding IEEE Conference on Computer Vision and Pattern Recognition. Alaska, USA : IEEE Press ,2008 : 1-8.

共引文献5

同被引文献12

  • 1ZHENG G, CHEN Y. A review on vision-based pedestrian detection [ C] // Proceedings of the 2012 IEEE Global High Tech Congress on Electronics. Piscataway: IEEE, 2012:49-54.
  • 2YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: a review [ J]. Neurocomputing, 2011, 74( 18): 3823 - 3831.
  • 3AGRAWAL D, MEENA N. Performance comparison of moving ob- ject detection techniques in video surveillance system[ J]. The Inter- national Journal of Engineering and Science, 2013, 2(1) : 240 - 242.
  • 4WANG C, WATADA J. Robust color image segmentation by Kar- hunen-Loeve transform based Otsu multi-thresholding and K-means clustering [ C]//Proceedings of the 5th International Conference on Genetic and Evolutionary Computing. Piseataway: IEEE, 2011 : 377 - 380.
  • 5SAHOO A K, PATNAIK S, BISWAL P K, et al. An efficient algo- rithm for human tracking in visual surveillance system[ C]// Pro- ceedings of the 2013 IEEE Second International Conference on Im- age Information Processing. Piscataway: IEEE, 2013:125-130.
  • 6ZHU R, WANG Y. Application of improved median filter on image processing[ J]. Journal of Computers, 2012, 7(4) : 838 - 841.
  • 7TU J, ZHANG C, HAO P. Robust real-time attention-based head- shoulder detection for video surveillance[ C]// Proceedings of the 20th IEEE International Conference on Image Processing. Piscat- away: IEEE, 2013:3340-3344.
  • 8ZHOU D, HU D. A robust object tracking algorithm based on SURF[ C]// Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing. Piscataway: IEEE, 2013:1-5.
  • 9阮锦新,尹俊勋.基于人脸特征和AdaBoost算法的多姿态人脸检测[J].计算机应用,2010,30(4):967-970. 被引量:23
  • 10李鸿生,薛月菊,黄晓琳,黄珂,何金辉.改进的自适应混合高斯前景检测方法[J].计算机应用,2013,33(9):2610-2613. 被引量:6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部