期刊文献+

基于权限相关性的Android恶意软件检测 被引量:37

Android malware detection based on permission correlation
下载PDF
导出
摘要 针对Android平台恶意软件检测需求和Android权限特征冗余的问题,提出一套从权限相关性角度快速检测恶意软件的方案。采用卡方检验计算各权限属性对于分类结果的影响大小,去除冗余权限特征,再对权限属性聚类,提取代表性权限特征,进一步减少冗余。最后利用基于不同权限特征权重的改进朴素贝叶斯算法进行软件分类。在收集的2000个软件样本上进行了实验,恶意软件漏检率为10.33%,总体预测准确率达到88.98%。实验结果表明,该方案利用少量权限特征,能够初步检测Android应用软件是否有恶意倾向,为深入判断分析提供参考依据。 Considering the demand of detecting Android malware and the redundancy of permission properties, a fast scheme was proposed to detect malware from the perspective of permission correlation. To eliminate the redundant permissions, Chi-square test was used to compute the influence of the permission on the classification resuhs. Then some representative permissions were selected on the basis of permission clustering to further reduce redundancy. Finally an improved Naive Bayesian classification based on the weights of different permissions was proposed to classify the software. Results of the experiments conducted on 2000 software samples show that the miss rate of malware detection is 10.33% and the overall prediction accuracy is 88.98%. Experiments indicate that this scheme is capable of detecting malware on Android platform by using a few permission properties, which can provide a reference for further analysis and judgment.
作者 张锐 杨吉云
出处 《计算机应用》 CSCD 北大核心 2014年第5期1322-1325,共4页 journal of Computer Applications
关键词 权限 特征选取 贝叶斯分类 检测 Android permission feature selection Bayesian classification detection
  • 相关文献

参考文献16

  • 1网秦.2013年上半年网秦全球手机安全报告[R/OL].[2013-07-23].http://cn.nq.com/neirong/2013Q2.pdf.
  • 2衣莉莉,张尼,刘镝.移动恶意软件现状及发展趋势[J].信息通信技术,2013,7(2):75-79. 被引量:4
  • 3JIANG X,ZHOU Y.A survey of Android malware[M].New York:Springer,2013:3-20.
  • 4初建朝,郑力明.Android安全性分析[J].微型机与应用,2013,32(20):1-3. 被引量:4
  • 5SCHMIDT A D,BYE R,SCHMIDT H G,et al.Static analysis of executables for collaborative malware detection on Android[C]//Proceedings of the 2009 IEEE International Conference on Communications.Piscataway:IEEE Press,2009:631-635.
  • 6BURGUERA I,ZURUTUZA U,NADJM-TEHRANI S.Crowdroid:behavior-based malware detection system for Android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.New York:ACM,2011:15-26.
  • 7CHIANG H S,TSAUR W.Mobile malware behavioral analysis and preventive strategy using ontology[C]//Proceedings of the 2010IEEE Second International Conference on Social Computing.Piscataway:IEEE Press,2010:1080-1085.
  • 8SHABTAI A,ELOVICI Y.Applying behavioral detection on Android-based devices[C]//Proceedings of the Mobile Wireless Middleware,Operating Systems,and Applications.Berlin:Springer,2010,48:235-249.
  • 9Google.Manifest.permission[EB/OL].[2013-11-01].http://developer.android.corn/reference/android/Manifest.permission.html.
  • 10BARRERA D,KAYACIK H G,van OORSCHOT P C,et al.A methodology for empirical analysis of permission-based security models and its application to Android[C]//CCS '10:Proceedings of the 17th ACM Conference on Computer and Communications Security.New York:ACM,2010:73-84.

二级参考文献18

  • 12010年互联网网络安全态势综述[EB/OL][2012-12-10].http://www.cert.org.cn/UserFiles/File/2010.pdf.
  • 22011年中国大陆地区手机安全报告[R/OL][2012-12-10].http://cnnq.com/neirong/2011.pdf.
  • 32011年中国手机安全状况报告[R/OL].[2012-12-10]http://bbs360.cn/5295927/252790024.html?recommend=1.
  • 4移动终端白皮书(2012年1.http://www.cttl.cn/txyy/ggl/201204/P020120413505417116578.pdf.
  • 52012年第三季度全球手机安全报告.http://cn.nq.com/neirong/2012Q3.pdf.
  • 6Zhou Y J, Wang Z, Zhou W, Jiang XX. Hey, You, Get off of My Market: Detecting Malicious Apps in Official and Alternative Android Markets. Proc. of the 19th Network and Distributed System Security Symposium(NDSS 2012). San Diego, CA, February 2012.
  • 7Enck W, Gilbert P, Chun B, Cox LP, Jung J, McDaniel P, Sheth AN. Taint Droid: an information-flow tracking system for realtime privacy monitoring on smartphones Proc. of the 9th USENIX. Vancouver, BC, Canada. 2010: 1-6. Gilbert P, Chun B Cox LP, Jung J. Vision: Automated Security Validation of Mobile Apps at App Markets. Proc. of the International Workshop on Mobile Cloud Computing and Services. USA: ACM. 2011: 21-26.
  • 8Chess B, McGraw Ct Static analysis for security. IEEE Security and Privacy, 2004, 2(6): 76-79.
  • 9Cheng S, Yang J, Wang J, Wang J, Jiang E Loongchecker: Practical summary-based semi-simulation to detect vulnerability in binary code. Proc. 10th Int. Conf. on Trust Security and Privacy in Computing ana Communications. IEEE, 2011: 150-159.
  • 10Android SDK.http://developer.android.com/sdk/index.html.

共引文献14

同被引文献181

  • 1瞿俊,顾刘军.基于朴素贝叶斯的安卓恶意软件检测研究[J].信息网络安全,2020(S01):27-30. 被引量:3
  • 2杨博,唐祝寿,朱浩谨,沈备军,林九川.基于静态数据流分析的Android应用权限检测方法[J].计算机科学,2012,39(S3):16-18. 被引量:8
  • 3杨欢,张玉清,胡予濮,刘奇旭.基于权限频繁模式挖掘算法的Android恶意应用检测方法[J].通信学报,2013,34(S1):106-115. 被引量:47
  • 4WANG Y, HARIHARAN S, ZHAO C, et al. Compac: enforce component-level access control in Android[C]//Proceedings of the 4th ACM Conference on Data and Application Security and Privacy. New York: ACM, 2014:25-36.
  • 5STACH C, MITSCHANG B. Privacy management for mobile platforms-a review of concepts and approaches[C]//Proceedings of the 14th IEEE International Conference on Mobile Data Management. Piscataway: IEEE Press, 2013,1:305-313.
  • 6BAI G, GU L, FENG T, et al. Context-aware usage control for Android[M]//JAJODIA S, ZHOU J. Security and Privacy in Communication Networks. Berlin: Springer, 2010,50:326-343.
  • 7NAUMAN M, KHAN S, ZHANG X. Apex: extending Android permission model and enforcement with user-defined runtime constraints[C]//Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2010:328-332.
  • 8de MELO L L, ZORZO S D. PUPDroid-personalized user privacy mechanism for Android[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Press, 2012:1479-1484.
  • 9KAUR A, UPADHYAY D. PeMo: modifying application's permissions and preventing information stealing on smartphones[C]//Proceedings of the 5th International Conference-Confluence the Next Generation Information Technology Summit. Piscataway: IEEE, 2014: 905-910.
  • 10ROSEN S, QIAN Z, MAO Z M. AppProfiler: a flexible method of exposing privacy-related behavior in Android applications to end users[C]//Proceedings of the 3rd ACM Conference on Data and Application Security and Privacy. New York: ACM, 2013:221-232.

引证文献37

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部