期刊文献+

米字型各向异性扩散模型的图像去噪算法 被引量:5

Improved image denoising algorithm using UK-flag shaped anisotropic diffusion model
下载PDF
导出
摘要 针对原始的各向异性扩散模型在对带噪图像去噪时,只利用了邻域内东、南、西、北4个方向上的参考信息,使得去噪效果不够明显的问题,提出了米字型各向异性扩散模型的图像去噪算法。该算法在利用了原始算法中待修复点周围4个方向上参考信息的基础上,还引入了该点邻域内对角线方向上的新信息,给出了采用周围8个方向上的信息进行对图像去噪的新模型,同时证明了该模型的合理性。用新提出的算法与原算法以及一种改进的同类算法对4幅带噪图像进行去噪。实验结果表明,新提出算法去噪效果的峰值信噪比(PSNR)相比原算法和改进同类算法平均提高1.90 dB和1.43 dB,平均结构相似度(MSSIM)分别平均提高0.175和0.1,说明该算法更适合于图像去噪。 To effectively improve the denoising effect of the original anisotropic diffusion model that used only the 4 neighborhood pixels information and ignored the diagonal neighborhood pixels information of the pixel to be repaired in the image denoising process, a image denoising algorithm using UK-flag shaped anisotropic diffusion model was proposed. This model not only made full use of the reference information of the 4 neighborhood pixels as in original algorithm, but also used another 4 diagonal neighborhood pixels information in the denoising process. Then the model using the 8 direction pixels information for image denoising was presented, and it was proved to be rational. The proposed algorithm, the original algorithm, and an improved similar algorithm were used to remove the noise from 4 images with noise. The experimental results show that the proposed algorithm has an average increase of 1.90 dB and 1.43 dB in Peak Signal-to-Noise Ratio (PSNR) value respectively, and an average increase of 0. 175 and 0. 1 in Mean Structure Similitary Index (MSSIM) value respectively, compared with the original algorithm and the improved similar algorithm, which concludes that the proposed algorithm is more suitable for image denoising.
出处 《计算机应用》 CSCD 北大核心 2014年第5期1494-1498,共5页 journal of Computer Applications
基金 国家社会科学基金资助项目(12EF119) 西藏自治区重点科技计划项目(Z2013B28G28/02) 国家级大学生创新创业训练计划项目(201210694019)
关键词 米字型各向异性扩散模型 图像去噪 峰值信噪比 平均结构相似度 UK-flag shaped anisotropic diffusion model image denoising Peak Signal-to-Noise Ratio (PSNR) Mean Structure Similarity Index (MSSIM)
  • 相关文献

参考文献13

二级参考文献102

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2耿玉亮,须德.视频镜头边界检测的统一策略[J].中国图象图形学报(A辑),2005,10(5):650-655. 被引量:8
  • 3韩冰,高新波,姬红兵.基于模糊粗糙集的新闻视频镜头边界检测方法[J].电子学报,2006,34(6):1085-1089. 被引量:11
  • 4朱立新,王平安,夏德深.非线性扩散图像去噪中的耦合自适应保真项研究[J].计算机辅助设计与图形学学报,2006,18(10):1519-1524. 被引量:12
  • 5Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 1990, 12(7): 629-639.
  • 6Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1- 4): 259-268.
  • 7Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion [J]. SIAM Journal on Numerical Analysis, 1992, 29(1) : 182-193.
  • 8You Y L, Kaveh M. Fourth-order partial differential equations for noise removal [J]. IEEE Trans on Image Processing, 2000, 9(10) : 1723-1730.
  • 9Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes [J]. IEEE Trans on Pattern Analysis and Machines Intelligence, 2004, 26 (8): 1020-1036.
  • 10Lee S H, Seo J K. Noise removal with Gauss curvaturedriven diffusion [J]. IEEE Trans on Image Processing, 2005, 14(7): 904-909.

共引文献68

同被引文献46

  • 1钱伟新,刘瑞根,王婉丽,祁双喜,王伟,程晋明.基于图像特征方向的各向异性扩散滤波方法[J].中国图象图形学报,2006,11(6):818-822. 被引量:17
  • 2Perona P, Malik J. Scale-space and edge detection u- sing anisotropic diffusion CJ. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629-639.
  • 3Yang M, Liang J, Zhang J, ea al. Non-local means theory based Perona-Malik model for image denosing [J]. Neurocomputing, 2013, 120: 262-267.
  • 4Chao S M, Tsai D M. An improved anisotropic diffu- sion model for detail and edge-preserving smoothing [-J. Pattern Recognition Letters, 2010, 31 (13): 2012-2023.
  • 5Guo Z C, Sun J B, Zhang D Z, et al. Adaptive Perona- Malik model based on the variable exponent for image denoising[J]. IEEE Transactions on Image Process- ing, 2012, 21(3): 958-967.
  • 6刘金硕,邓娟,周峥,等.基于CUDA的并行程序设计[M].北京:科学出版社,2014:46-47.
  • 7Yang C T, Huang C L, Lin C F. Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters[-J3. Computer Physics Communications, 2011, 182(1): 266-269.
  • 8Thurley M J, Danell V. Fast morphological image pro- cessing open-souree extensions for GPU processing with CUDA[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(7): 849-855.
  • 9Jacobsen D A, Senocak I. Multi-level parallelism for incompressible flow computations on GPU clusters f-J]. Parallel Computing, 2013, 39(1): 1-20.
  • 10Ehlke M, Ramm H, Lamecker H, et al. Fast Gener- ation of Virtual X-ray Images for Reconstruction of 3D Anatomy[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2673-2682.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部