期刊文献+

多目标资源优化分配问题的Memetic算法 被引量:9

Hybrid effective Memetic algorithm for multi-objective resource allocation problem
原文传递
导出
摘要 针对传统算法求解多目标资源优化分配问题收敛慢、Pareto解不能有效分布在Pareto前沿面的问题,提出一种新的Memetic算法.在遗传算法的交叉算子中引入模拟退火算法,加强了遗传算法的局部搜索能力,加快了收敛速度.为了使Pareto最优解均匀分布在Pareto前沿面,在染色体编码中引入禁忌表,增加了种群的多样性,避免了传统遗传算法后期Pareto解集过于集中的缺点.通过与已有的遗传算法、蚁群算法、粒子群算法进行比较,仿真实验表明了所提出算法的有效性,并分析了禁忌表长度和模拟退火参数对算法收敛性的影响. For the multi-objective resource allocation problem(MORAP), the traditional algorithms execute slowly and non-dominated solutions can’t uniformly distribute in the Pareto front. Therefore, a new memetic algorithm(HTGSA) is proposed. The simulated annealing algorithm is introduced to GA to strengthen the local search and convergence speed. To make the non-dominated solutions uniformly distribute in the Pareto front, a tabu constraint strategy is introduced to the survival selection process of genetic algorithm. The tabu constraint strategy can strengthen the diversity of the solutions and prevent non-dominated solutions over concentration in the Pareto front. Finally, the proposed algorithm is tested with the numerical simulation experiment comparing the results with ACO, GA and PSO. Experimental results on MORAP show that this hybridization can significantly accelerate the convergence speed and reduce the computation time.
作者 魏心泉 王坚
出处 《控制与决策》 EI CSCD 北大核心 2014年第5期809-814,共6页 Control and Decision
基金 国家自然科学基金面上项目(71273188) 国家自然科学基金重大项目(91024031)
关键词 资源分配问题 MEMETIC算法 遗传算法 模拟退火 resource allocation problem Memetic algorithm genetic algorithm simulated annealing algorithm
  • 相关文献

参考文献13

  • 1Hou Y C, Chang Y H. A new efficient encoding mode of genetic algorithms for the generalized plant allocation problem[J]. J of Information Science and Engineering, 2004, 20(5): 1019-1034.
  • 2Dai Y S, Xie M, Poh K L. Optimal testing-resource allocation with genetic algorithm for modular software systems[J]. J of Systems and Software, 2003, 66(1): 47-55.
  • 3Balasubramanian A, Levine B, Venkataramani A. DTN routing as a resource allocation problem[J]. ACM Sigcomm Computer Communication Review, 2007, 37(4): 373-384.
  • 4Osman M S, Abo-Sinna M A, Mousa A A. An effective genetic algorithm approach to multi-objective resource allocation problems[J]. Applied Mathematics and Computation, 2005, 163(2): 755-768.
  • 5Lin C M, Gen M. Multiobjective resource allocation problem by multistage decision-based hybrid genetic algorithm[J]. Applied Mathematics and Computation, 2007, 187(2): 574-583.
  • 6Chang Y H, Hou Y C. Dynamic programming decision path encoding of genetic algorithms for production allocation problems[J]. Computers & Industrial Engineering, 2008, 54(1): 53-65.
  • 7Chaharsooghi S K, Meimand Kermani A H. An effective ant colony optimization aigorithm(ACO) for multi-objective resource allocation problem(MORAP)[J]. Applied Mathematics and Computation, 2008, 200(1): 167-177.
  • 8Gong Y, Zhang J, Chung H, et al. An efficient resource allocation scheme using particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(6): 801-816.
  • 9Yin P Y, Wang J Y. A particle swarm optimization approach to the nonlinear resource allocation problem[J]. Applied Mathematics and Computation, 2006, 183(1): 232-242.
  • 10Barkat Ullah A S S M, Sarker R, Lokan C. Handling equality constraints with agent-based memetic algorithms[J]. Memetic Computing, 2011, 3(1): 51-72.

同被引文献83

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部