期刊文献+

重组GST-Crosstide蛋白的表达纯化及其在AGC型蛋白激酶活性检测中的应用

Expression and purification of GST-Crosstide and its application in activity analysis of AGC protein kinases
原文传递
导出
摘要 AGC型蛋白激酶在信号通路中占据着极为重要的地位,通过对各种信号通路的调控来影响细胞的生长、增殖和凋亡进程.为方便检测AGC型蛋白激酶的活性,设计并构建了新型AGC型蛋白激酶特异底物GST-Crosstide.通过同位素标记体外磷酸化的方法研究了酵母表达的Pkh1、Ypk1和大肠杆菌表达的Akt1三种AGC型蛋白激酶磷酸化GSTCrosstide的能力.结果显示,酵母表达的有活性的Pkh1和Ypk1均可有效磷酸化GST-Crosstide,并且由于Pkh1对Ypk1的进一步激活,二者共同作用可显著增加GST-Crosstide磷酸化.而仅采用大肠杆菌表达的没有被活化的Akt1则无法磷酸化GST-Crosstide,但Akt1可以被Pkh1或Ypk1激活,从而获得磷酸化GST-Crosstide的能力.研究表明,GST-Crosstide可以作为AGC蛋白激酶活性检测的有效工具,并将有效促进真核生物蛋白激酶调控的细胞信号转导通路的研究. AGC protein kinases play important roles in cellular signal pathways which affect cell growth, proliferation and apoptosis. The purpose of this study was to advance the researches towards elucidating signal pathways regulated by AGC kinases by providing a new protein substrate. We designed and constructed GST-Crosstide, a new specific protein substrate of AGC kinases. Radiolabeled phosphorylation assays were performed in vitro using AGC kinases including Pkhl, Ypkl and Aktl to phosphorylate GST-Crosstide. The results demonstrated that GST-Crosstide was phosphorylated effectively by active Pkhl and Ypk1 which were expressed in yeast. The interaction between Pkhl and Ypkl enhanced the phosphorylation of GST- Crosstide. The inactive form of Aktl expressed in E. coli was unable to phosphorylate GST-Crosstide until it was activated by Pkhl or Ypkl. Our study indicated that GST-Crosstide could be used as an efficient tool to analyze AGC protein kinase activity. GST-Crosstide may benefit future studies on cellular signal transduction pathways regulated by AGC protein kinases.
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2014年第2期223-226,共4页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(3 0 671181)资助~~
关键词 GST-Crosstide AGC型蛋白激酶 体外磷酸化 AKT1 Ypk1 Pkh1 GST-Crosstide AGC protein kinase kinase assay Akt1 Ypk1 Pkh1
  • 相关文献

参考文献14

  • 1Manning BD, Cantley LC. AKT/PKB signaling: Navigating downstream [J]. Cell, 2007, 129 (7): 1261-1274.
  • 2Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann l, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [J]. Science, 1997, 275: 1943-1947.
  • 3Steck PA, Pershouse MA, Jasser SA, Alfred Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DHR, Tavtigian SV. Identificationof a candidate tumour suppressor gene, MMAC1, at chromosome 10q23. 3 that is mutated in multiple advanced cancers [J]. Nat Genet, 1997, 15: 356-362.
  • 4Li DM, Sun H. TEP1, encoded by a candidate tumor suppressorlocus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta [J]. Cancer Res, 1997, 57: 2124-2129.
  • 5Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway [J]. Proc Natl Acad Sci USA, 1999, 96: 4240-4245.
  • 6Hansson M, Vener AV. Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana [J]. Mol Cell Proteomics, 2003, 2 (8): 550-559.
  • 7刘军,闾磊,朱德燕,苗敏,曹红平,钟彦,刘科.酵母(Saccharomyces cerevisiae)蛋白激酶SCH9激活环磷酸化调控胁迫应答[J].四川大学学报(自然科学版),2010,47(1):185-191. 被引量:6
  • 8Cristofano AD, Pesce B, Cordon-Cardo C, Pandolfi PP. Pten is essential for embryonic development and tumour suppression [J]. Nat Genet, 1998, 19: 348-355.
  • 9Comer FI, Parent CA. PI 3-kinases and PTEN: how opposites chemo attract [J]. Cell, 2002, 109: 541-544.
  • 10Noble MEM, Endicott JA, Johnson LN. Protein Kinase Inhibitors: Insights into Drug Design from Structure [J]. Science, 2004, 303: 1800-1805.

二级参考文献23

  • 1廖翀,白林含,阮琨,姜新,代旭兰,龚静,曹毅,乔代蓉.热带假丝酵母XYL1基因的克隆及序列分析[J].四川大学学报(自然科学版),2006,43(1):228-231. 被引量:7
  • 2Hunter T. Signaling-2000 and beyond [ J ]. Cell, 2000, 100.. 113.
  • 3Kreegipuu A, Blom N, Brunak S. PhosphoBase, a database of phosphorylation sites: release 2.0 [J]. Nucleic Acids Res, 1999, 27: 237.
  • 4Noble M E, Endicott J A, Johnson L N. Protein kinase inhibitors: insights into drug design from structure [J]. Science, 2004, 303: 1800.
  • 5Hunter T, Plowman G D. The protein kinases of budding yeast., six score and more [J]. Trends in Biochemical Sciences, 1997, 22: 18.
  • 6Liu K, Zhang X, Sumanasekera C, et al. Signalling functions for sphingolipid long-chain bases in Saccharomyces cerevisiae [ J ]. Biochemical Society Transactions, 2005, 33:1170.
  • 7Kaeberlein M, Powers R W, Steffen K K, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients [J]. Science, 2005, 310.. 1193.
  • 8Urban J, Soulard A, Huber A, etal. Seh9 Is a Major Target of TORC1 in Saecharomyces cerevisiae [J]. Molecular Cell, 2007, 265 663.
  • 9Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORCI[J]. Molecular Microbiology, 2008, 69: 277.
  • 10Pascual-Ahuir A, Proft M. The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes [J]. The EMBO Journal., 2007, 26: 3098.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部