摘要
因为分析含有多个平衡点,或者超越函数的一维动力系统的可积性和稳定性通常是困难的,所以对一维动力系统进行简化是一个很有意义的问题.对含有2-3个平衡点的一维动力系统,根据系统右端函数的7种情况,利用Lagrange和Hermite插值多项式的方法,提出了相应的7类大范围最低次非线性化近似系统,通过积分近似系统得出部分近似解,通过稳定性分析得出平衡点的稳定性保持结果.最后,将一种近似方法应用于一个商品定价模型的具体分析,得到了定价模型的平衡价格的稳定性和动态价格的近似表达式.
Because it is often difficult to analyze the integrability and stability of one- dimensional dynami- cal systems with multiple equilibriums or transcending functions such dynamical systems. According to seven different cases of the , it is a very significant problem for simplifying functions on the right hand of one - dimensional dynamical systems with two or three equilibriums, seven kinds of non - linearized approximate systems are present by using Lagrange and Hermite interpolation polynomials. Approximate solutions are given by integrating the non - linearized approximate systems. It is found that the stability of the equilibriums is preserved by the new approx- imate methods. Finally, one of the non - linearized approximation methods is applied to analyze a pricing model of commodity concretely, for which the stability of equilibriums and the explicit approximate expression of the dy- namical price are obtained.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第3期314-320,共7页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金项目(11162020
10772158)
云南省中青年学术与技术带头人计划项目(2008PY059)