期刊文献+

基于Pareto熵的多目标粒子群优化算法 被引量:137

Multiobjective Particle Swarm Optimization Based on Pareto Entropy
下载PDF
导出
摘要 粒子群优化算法因形式简洁、收敛快速和参数调节机制灵活等优点,同时一次运行可得到多个解,且能逼近非凸或不连续的Pareto最优前端,因而被认为是求解多目标优化问题最具潜力的方法之一.但当粒子群优化算法从单目标问题扩展到多目标问题时,Pareto最优解集的存储与维护、全局和个体最优解的选择以及开发与开采的平衡等问题亦随之出现.通过目标空间变换方法,采用Pareto前端在被称为平行格坐标系统的新目标空间中的分布熵及差熵评估种群的多样性及进化状态,并以此为反馈信息来设计进化策略,使得算法能够兼顾近似Pareto前端的收敛性和多样性.同时,引入格占优和格距离密度的概念来评估Pareto最优解的个体环境适应度,以此建立外部档案更新方法和全局最优解选择机制,最终形成了基于Pareto熵的多目标粒子群优化算法.实验结果表明:在IGD性能指标上,与另外8种对等算法相比,该算法在由ZDT和DTLZ系列组成的12个多目标测试问题集中表现出了显著的性能优势. Due to its concise formation, fast convergence, and flexible parameters, particle swarm optimization (PSO) with the ability to gain multiple solutions at a run and to approximate the Pareto front of those non-convex or discontinuous multiobjective optimization problems (MOPs) is considered to be one of the most promising techniques for MOPs. However, several challenges, such as maintaining the archive, selecting the global and personal best solutions, and balancing the exploration and exploitation, occur when extending PSO from single-objective optimization problems to MOPs. In this paper, the distribution entropy and its difference of an approximate Pareto front in a new objective space, named parallel cell coordinate system (PCCS), are proposed to assess the diversity and evolutionary status of the population. The feedback information from evolutionary environment is served in the evolutionary strategies to balance the convergence and diversity of an approximate Pareto front. Meanwhile, the new concepts, such as cell dominance and individual density based on cell distance in the PCCS, are introduced to evaluate the individual environmental fitness which is the metric using in updating the archive and selecting the global best solutions. The experimental results illustrate that the proposed algorithm in this papersignificantly outperforms the other eight peer competitors in terms of IGD on 12 test instances chosen from the ZDT and DTLZ test suites.
出处 《软件学报》 EI CSCD 北大核心 2014年第5期1025-1050,共26页 Journal of Software
基金 中央高校基本科研业务费专项资金(2672013ZYGX2013J078)
关键词 多目标优化问题 粒子群优化 平行格坐标系统 Pareto熵 自适应参数 multiobjective optimization problem (MOP) particle swarm optimization (PSO) parallel cell coordinate system (PCCS) Pareto entropy adaptive parameter
  • 相关文献

参考文献1

二级参考文献12

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization. In..Proc of the IEEE International Conference on Neural Networks.Perth, Australia: IEEE Press, 1995, 1942-1948
  • 2Hu X, Eberhart R, Shi Y H. Particle Swarm with Extended Memory for Multiobjective Optimization. In: Proc of the IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2003, 193-197
  • 3Coello C C A, Pulido G T, Lechuga M S. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279
  • 4Knowles J D, Corne D W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 2000, 8(2): 149-172
  • 5Parsopoulos K E, Vrahatis M N. Particle Swarm Optimization Method in Multi-Objective Problems. In: Proc of the ACM Symposium on Applied Computing. Madrid, Spain, 2002, 603-607
  • 6Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In.. Proc of the 1st International Conference on Genetic Algorithm. Hillsdale, USA:Lawrence Erlbaum Associates, 1985, 93-100
  • 7Mostaghim S, Teich J. Strategies for Finding Good Local Guides in Multi-Objective Particle Swarm Optimization. In: Proc of the IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2003, 26-33
  • 8Hu X, Eberhart R C. Multi-Objective Optimization Using Dynamic Neighborhood Particle Swarm Optimization. In: Proc of the Congress on Evolutionary Computation. Honolulu, USA, 2002, Ⅱ : 1677-1681
  • 9Corne D W, Knowles J D. The Pareto Envelope-Based Selection Algorithm for Multi-Objective Optimization. In: Proc of the 6th International Conference on Parallel Problem Solving from Nature. Paris, France, 2000, 839-848
  • 10Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report, 103, Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland, 2001

共引文献24

同被引文献1224

引证文献137

二级引证文献768

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部