期刊文献+

基于交替投影算法求解单变量线性约束矩阵方程问题 被引量:1

ALTERNATING PROJECTION ALGORITHM FOR SINGLE VARIABLE LINEAR CONSTRAINTS MATRIX EQUATION PROBLEMS
原文传递
导出
摘要 研究如下线性约束矩阵方程求解问题:给定A∈R^(m×n),B∈R^(n×p)和C∈R^(m×p),求矩阵X∈R(?)R^(n×n)"使得A×B=C以及相应的最佳逼近问题,其中集合R为如对称阵,Toeplitz阵等构成的线性子空间,或者对称半(ε)正定阵,(对称)非负阵等构成的闭凸集.给出了在相容条件下求解该问题的交替投影算法及算法收敛性分析.通过大量数值算例说明该算法的可行性和高效性,以及该算法较传统的矩阵形式的Krylov子空间方法(可行前提下)在迭代效率上的明显优势,本文也通过寻求加速技巧进一步提高算法的收敛速度. We consider the following linear constrained matrix equation problem: given matrices A∈Rm×n,B∈Rn×p,and C∈m×p, find matrix X∈RCRn×n such that AXB = C, and the associate optimal approximation problem. The matrix set 7~ are considered as lin- ear subspaces which are composed of symmetric matrices, Toeplitz type matrices and so on, or closed cone sets which are composed of symmetric positive semi(c)-definite matri- ces, (symmetric) nonnegative matrices and so on. A alternating projection algorithm and some convergence acceleration techniques are presented to solve the proposed problem in the premise of consistent and some convergence results of the algorithm are proved. Numerical experiments are performed to illustrate the applicability of the algorithm and a comparison with some existing Krylov subspace methods (in the premise of consistent) is also given.
出处 《计算数学》 CSCD 北大核心 2014年第2期143-162,共20页 Mathematica Numerica Sinica
基金 国家自然科学基金资助项目(11301107 11226323 11101100 11261014) 广西自然科学基金资助项目(2013GXNSFBA019009 2012GXNSFBA053006)
关键词 线性矩阵方程 交替投影算法 Dykstra’s交替投影算法 最佳逼近问题 KRYLOV子空间方法 Linear matrix equation alternating projection algorithm Dykstra's al- ternating projection algorithm optimal approximation problem Krylov subspace method
  • 相关文献

参考文献24

  • 1李书,陈益.采用交替投影算法重构超声信号[J].振动工程学报,2006,19(2):206-211. 被引量:3
  • 2Ding F and Chen T W. Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations[J]. IEEE Transactions on Automatic Control, 2005, 50: 1216-1221.
  • 3Jbilou K, Messaoudi A and Sadok H. Global FOM and GMRES algorithms for matrix equations[J]. Applied Numerical Mathematics, 1999, 31: 49-63.
  • 4Lin T Q.Implicitly restarted global FOM and GMRES for nonsymmetric matrix equations and Sylvester equations[J]. Applied Mathematics and Computation, 2005, 167: 1004-1025.
  • 5Peng Y X, Hu X Y and Zhang L. An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB = C[J]. Applied Mathematics and Computation, 2005, 160: 763-777.
  • 6Salkuyeh D K. CG-type algorithms to solve symmetric matrix equations[J]. Applied Mathematics and Computation, 2006, 172: 985-999.
  • 7Lei Y and Liao A P. A minimal residual algorithm for the inconsistent matrix equation AX B = C over symmetric matrices[J]. Applied Mathematics and Computation, 2007, 188: 499-513.
  • 8Li J F, Hu X Y, Duan X F and Zhang L. Numerical solutions of AX B = C for mirror symmetric matrix X under a specified submatrix constraint[J]. Computing, 2010, 90: 39-56.
  • 9Toutounian F and Karimi S. Global least squares method (GI-LSQR) for solving general linear systems with several right-hand sides[J]. Applied Mathematics and Computation, 2006, 178: 452- 460.
  • 10Peng Z Y. A matrix LSQR iterative method to solve matrix equation AXB = C[J]. International Journal of Computer Mathematics, 2010, 87: 1820-1830.

二级参考文献17

  • 1欧阳宇锋.求解一类变形变分不等式的投影收缩算法及其性质[J].数学研究,1997,30(1):83-86. 被引量:13
  • 2Bing-sheng He,Li-zhi Liao,Xiao-ming Yuan.A LQP BASED INTERIOR PREDICTION-CORRECTION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS[J].Journal of Computational Mathematics,2006,24(1):33-44. 被引量:5
  • 3崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 4Logan B. Information in the zero-crossings of band pass signals[J]. Bell System Tech J. , 1977, (56): 510.
  • 5Curtis S, Oppenheim A. Reconstruction of multidimensional signals from zero-crossings[J]. J Opt Soc Amer, 1987, (4) :221.
  • 6Zeevi Y Y,Rotem D. Image reconstruction from zerocrossings[J]. IEEE Trans ASSP, 1986, (34) : 1 269.
  • 7Sanz J, Huang T. Image representation by sign information[J]. IEEE Trans PAMI, 1992, ( 11 ) : 729.
  • 8Mallat S. Zero-crossings of a wavelet transform[J].IEEE Trans Information Theory, 1991,37(4) : 1 019-1 033.
  • 9Mallat S, Zhang S. Characterization of signal from multiscale edges [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1992,14 (7) : 710-732.
  • 10Cvetkovic Z, Vetterli M. Discrete-time wavelet extreme representation : Design and consistent reconstruction [J]. IEEE Trans Signal Processing,1995,43(3) :681-693.

共引文献14

同被引文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部