摘要
本文主要研究了线性随机分数阶微分方程Euler方法的弱收敛性与弱稳定性.首先构造了数值求解线性随机分数阶微分方程的Euler方法,然后证明该方法是弱稳定的和α阶弱收敛的,文末给出的数值算例验证了所获得的理论结果的正确性.
The authors mainly study the weak convergence and weak stability of Euler method for linear stochastic fractional differential equation. In this paper, an explicit numerical method for the linear stochastic fractional differential equation is proposed. Weak convergence and weak stability of the Euler method are established. Finally, one numerical example is given. The numerical results demonstrate the effectiveness of the theoretical analvsis.
出处
《计算数学》
CSCD
北大核心
2014年第2期195-204,共10页
Mathematica Numerica Sinica
基金
国家自然科学基金(11171352
11271311)