期刊文献+

线性随机分数阶微分方程Euler方法的弱收敛性与弱稳定性 被引量:4

WEAK CONVERGENCE AND WEAK STABILITY OF EULER METHOD FOR LINEAR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATION
原文传递
导出
摘要 本文主要研究了线性随机分数阶微分方程Euler方法的弱收敛性与弱稳定性.首先构造了数值求解线性随机分数阶微分方程的Euler方法,然后证明该方法是弱稳定的和α阶弱收敛的,文末给出的数值算例验证了所获得的理论结果的正确性. The authors mainly study the weak convergence and weak stability of Euler method for linear stochastic fractional differential equation. In this paper, an explicit numerical method for the linear stochastic fractional differential equation is proposed. Weak convergence and weak stability of the Euler method are established. Finally, one numerical example is given. The numerical results demonstrate the effectiveness of the theoretical analvsis.
出处 《计算数学》 CSCD 北大核心 2014年第2期195-204,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金(11171352 11271311)
关键词 线性随机分数阶微分方程 EULER方法 弱收敛性 弱稳定性 linear stochastic fractional differential equation Euler method weak convergence weak stability
  • 相关文献

参考文献13

  • 1Chang C C. Numerical Solution of Stochastic Differential Equations[D]. University of California, Berkeley: Ph.D. Dissertation, 1985.
  • 2Lubich Ch. Discretized fractional calculus[J]. SIAM J. Math. Anal., 1986, 17(3): 704-716.
  • 3Podlubny Igor. Fractional differential equations[M]. San Diego: Academic press, 1999.
  • 4Anh V V, Mcvinish R. Fractional differential equations driven by Levy noise[J]. Journal of Applied Mathematics and Stochastic Analysis, 2003, 16(2): 97-119.
  • 5Debbia Latifa, Dozzi Marco. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension[J] Stochastic Processes and their Applications, 2005, (115): 1764-178I.
  • 6Kuo Hui-Hsiung. Introduction to Stochastic Integration[M]. New York: Springer-Verlag, 2006.
  • 7Mao Xuerong. Stochastic Differential Equations and their Applications[M]. Chichester: Horwood, 2007.
  • 8Anh V V, Yong J M, Yu Z G. Stochastic modeling of the auroral electrojet index[J]. Journal of Geophysical Research, 2008, (113): 1-16.
  • 9Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions[J]. Applied Mathematical Modelling, 2008, 32(5): 836-859.
  • 10Gradinaru Mihai, Nourdin Ivan. Milstein's type schemes for fractional SDEs[J]. Annales de I'Institut Henri Poincare(B), Probability and Statistics, 2009, 45(4): 1085-1098.

同被引文献5

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部