期刊文献+

IR125和HDITCP在不同烷基链长阳离子离子液体中的光异构化动力学 被引量:3

Photoisomerization Kinetics of IR125 and HDITCP in Ionic Liquids with Different Cation Alkyl Chain Lengths
下载PDF
导出
摘要 利用稳态吸收和荧光光谱以及时间相关单光子计数实验,分别测得近红外花菁分子IR125和HDITCP在不同烷基链长阳离子离子液体中的荧光量子产率和荧光寿命,并通过计算获得了它们各自在相应离子液体中的光异构化速率.发现IR125和HDITCP在不同离子液体中的光异构化速率没有随着离子液体粘度的增大而产生明显变化.与IR125和HDITCP在与离子液体具有相同粘度的甘油水溶液中的光异构化速率对比,发现IR125和HDITCP在离子液体中的光异构化能垒比它们在甘油水溶液中的光异构化能垒增大约2 kJ?mol-1,这表明在高粘度的离子液体中IR125或HDITCP与离子液体之间特殊的相互作用会阻碍它们各自的光异构化过程. The photoisomerization kinetics of IR125 and HDITCP in ionic liquids with different cation alkyl chain lengths were investigated by measuring their fluorescence lifetimes and quantum yields using steady-state absorption and fluorescence spectroscopies, and time-correlated single-photon counting experiments. It was found that the photoisomerization rate constants for IR125 and HDITCP in all the selected ionic liquids were almost identical and did not change with increasing ionic liquid viscosity. A comparison of the photoisomerization rate constants of IR125 and HDITCP in isoviscous aqueous glycerol solutions with those in ionic liquids showed that the photoisomerization energy barriers of IR125 and HDITCP in ionic liquids were about 2 kJ·mol^-1 higher than those in the isoviscous aqueous glycerol solutions, indicating that specific interactions between IR125 or HDITCP and the ionic liquid restrain their respective photoisomerization processes in highly viscous ionic liquids.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第5期987-993,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21273280)资助项目~~
关键词 花菁染料 离子液体 光异构化 荧光量子产率 荧光寿命 Cyanine dye Ionic liquid Photoisomerization Fluorescence quantum yield Fluorescence lifetime
  • 相关文献

参考文献51

  • 1Hallett, J. P. Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248.
  • 2Coleman, D. Gathergood, N. Chem. Soc. Rev. 2010, 39, 600. doi: 10.1039/b817717c.
  • 3Petkovic, M. Seddon, K. R. Rebelo, L. P. Silva Pereira, C. Chem. Soc. Rev. 2011, 40, 1383. doi: 10.1039/c004968a.
  • 4Jessop, P. G. Jessop, D. A. Fu, D. Phan, L. Green Chem. 2012, 14, 1245. doi: 10.1039/c2gc16670d.
  • 5Wellens, S. Thijs, B. Binnemans, K. Green Chem. 2012, 14, 1657. doi: 10.1039/c2ge35246j.
  • 6Welton, T. Green Chem. 2011, 13, 225. doi: 10.1039/c0gc90047h.
  • 7Wilkes, J. S. Green Chem. 2002, 4, 73. doi: lO.1039/b110838g.
  • 8Li, H. Bhadury, P. S. Song, B. Yang, S. RSCAdv. 2012, 2, 12525. doi: 10.1039/c2ra21310a.
  • 9Arzhantsev, S. Ito, N. Heitz, M. Maroncelli, M. Chem. Phys. Lett. 2003, 381,278. doi: 10.1016/j.cplett.2003.09.131.
  • 10Zhang, X. X. Liang, M. Emsting, N. P. Maroncelli, M. Phys. Chem. B 2013, 117, 4291. doi: lO.1021/jp305430a.

同被引文献99

  • 1潘旭,戴松元,王孔嘉,史成武,郭力.染料敏化纳米薄膜太阳电池中离子液体基电解质的研究进展[J].物理化学学报,2005,21(6):697-702. 被引量:13
  • 2吴晓萍,刘志平,汪文川.分子模拟研究气体在室温离子液体中的溶解度[J].物理化学学报,2005,21(10):1138-1142. 被引量:18
  • 3Huo, E; Liu, Z.; Wang, W. J. Phys. Chem. B 2013, 117, 11780 doi: 10.1021/jp407480b.
  • 4Xiong, D.; Li, Z.; Wang, H.; Wang, J. Green Chem. 2013, 15, 1941. doi: 10.1039/c3gc4041 lk.
  • 5Bai, T.; Ge, R.; Gao, Y.; Chai, J.; Slattery, J. M. Phys. Chem. Chem. Phys. 20!3, 15, 19301. doi: 10.1039/c3cp53441c.
  • 6Ma, X. X.; Wei, J.; Zhang, Q. B.; Tian, E; Feng, Y. 5(.; Guan, W Ind. Eng. Chem. Res. 2013, 52, 9490. doi: 10.1021/ie401130d.
  • 7Hallett, J. E; Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248.
  • 8Liu, Z.; Meng, X.; Zhang, R.; Xu, C.; Dung, H.; Hu, Y.AIChE J. 2014, 60, 2244. doi: 10.1002/aic.14394.
  • 9Wang, H. Y.; Wang, J. J.; Fan, M. H. Chem. Commun. 2012, 48, 392. doi: 10.1039/clcc15600d Sun,.
  • 10X.; Chi, Y.; Mu, T. Green Chem. 2014, 16, 2736. doi: 10.1039/e4gc00085d.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部