期刊文献+

基于路径融合的多图层推荐算法

Path Integration-Based Multiple Layers Recommendation
下载PDF
导出
摘要 图推荐算法中资源分配矩阵的计算和存储占用大量开销,为了提高基于图推荐的效率,提出一种基于路径融合的多图层混合策略推荐算法(PIML).该算法中,为了提高推荐精度并综合考虑多种因素以给出全面推荐,基于路径融合方法,利用分流策略优化资源分配,并对时间和评分因素加权,将人口统计学和物品内容信息融入到多图层,实现基于二部图推荐.实验结果表明:该算法没有增加时间开销,提高了推荐精度,使推荐更全面更灵活,并可实时推荐. In graph-based recommendation, the calculation and storage of resource allocation matrix take up a lot of overhead, in order to improve efficiency of algorithm. Path Integration-Based Multiple Layers Recommendation(PIML) was proposed. In the algorithm, path integration-based shunt strategy was used to dynamically allocate resources, and timestamp and ratings were added to the graph. On the other hand, demographic information and item content information were added to the multiple layers structure, considering a variety of factors, it gave more comprehensive recommendation. Experimental results show that the algorithm improves the accuracy without increasing time cost; and makes recommendation more comprehensive and can give real-time recommendation.
出处 《计算机系统应用》 2014年第5期145-151,共7页 Computer Systems & Applications
基金 教育部规划基金(11YJA860028) 福建省自然科学基金(3013J01219)
关键词 路径融合 多图层 资源分配 分流策略 path integration multiple layers allocation of resources shunt strategy
  • 相关文献

参考文献13

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:437
  • 2Adomavicius C~ Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005, 17(6): 734-749.
  • 3高滢,齐红,刘杰,刘大有.结合似然关系模型和用户等级的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1463-1469. 被引量:20
  • 4Choi K, Suh Y. A new similarity function for selectingneighbors for each target item in collaborative filtering. Knowledge-Based Systems, 2012, 37(1): 146-153.
  • 5Chen JL, Rowan N, Les N,et al. Short and tweet: Experiments on recommending content from information streams. Proc. of the SIGCHI Conference on Human Factors in Computing Systems. New York, ACM Press. 2010. 1185-1194.
  • 6Li J, Xu Y, Wang YF, et al. Strongest association rules mining for efficient applications. Proc. of the Fourth IEEE Conference on Service Systems and Service Management, Piscataway, N J, IEEE Press, 2007. 502-507.
  • 7李杰,徐勇,王云峰,朱昭贤.面向个性化推荐的强关联规则挖掘[J].系统工程理论与实践,2009,29(8):144-152. 被引量:45
  • 8张少中,陈德人.面向个性化推荐的两层混合图模型.软件学报,2009,20(zk):123-130.
  • 9Li X, Su X, Wang MY. Social network-based recommend- ation: a graph random walk kernel approach. Proc. of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries. New York, ACM Press. 2012. 409-410.
  • 10Zhou T, Ren J, Medo M. Bipartite network projection and personal recommendation. Physical Review E, 2007, 76(4): 6116-6123.

二级参考文献136

共引文献493

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部