期刊文献+

考虑用户兴趣变化的概率隐语意协同推荐算法 被引量:5

PLSA Collaborative Filtering Algorithm Incorporated with User Interest Change
下载PDF
导出
摘要 推荐系统是人们从海量信息中获取对自己有用信息的一种有效途径,在学术界和工业界都受到广泛关注.协同过滤则是推荐系统领域最流行的算法,目前很多协同过滤算法都是静态模型,没有考虑到用户兴趣会随着时间而变化.本文提出一种融合算法,利用高斯概率隐语意(PLSA)模型提取出用户的长期兴趣分布,然后结合用户评分时间窗捕获用户短期兴趣变化,从而更准确的为用户做出推荐.在Netflix和MovieLens数据集的上测试表明,改进算法的预测评分准确率明显高于经典的基于用户相似度算法和PLSA算法. Recommend system is an effective method for people to get useful knowledge from mass information. It has attracted widespread attention in both academia and industry. Collaborative filtering (CF) is the most popular algorithm in the research of Recommend system. However most of current CF algorithms are static models, which do not take into account of user interest changing. The paper proposed a hybrid recommend method, which capture user's long-term interests with Gaussian probabilistic latent semantic (PLSA) algorithm, at the same time, capture user's short-time interests with rating window. The experimental results obtained on Movietens dataset and Netflix dataset clearly show that the new algorithm is more accurate than traditional user-based algorithm and PLSA algorithm.
出处 《计算机系统应用》 2014年第5期162-166,共5页 Computer Systems & Applications
关键词 推荐系统 协同过滤 概率隐语意算法 兴趣变化 时间窗 recommender system collaborative filtering PLSA interest changing time window
  • 相关文献

参考文献13

  • 1刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 2Sarwar B, Karypis G. Item-based collaborative filtering recommendation algorithms. WWW2007,285-295.
  • 3Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. IEEE Computer Society, 2009, 42(8): 30-37.
  • 4Miyahara K, Pazzani MJ. Collaborative filtering with the simple bayesian classifier. 6th Pacific Rim international Conference on Artificial Intelligence. 2000, 1886. 679-689.
  • 5Hofmann T. Latent class models for collaborative filtering. Proc. of the International Joint Conference in Artificial Intelligence. 1999. 688-693.
  • 6王卫平,刘颖.基于客户行为序列的推荐算法[J].计算机系统应用,2006,15(9):35-38. 被引量:12
  • 7Hofmann T. Latent semantic models for collaborative filtering. ACM Transactions (TOIS), 2004, 22(1): 89-115.
  • 8Liang X, Yuan Q, Zhao S, Chen L, Zhang X, Yang Q, Sun J. Temporal recommendation on graphs via long- and short-term preference fusion. SIGKDD. 2010.723-732.
  • 9丁建勇.基于时间特性的网络结构推荐[学位论文].成都:电子科技大学,2009.
  • 10顾申华.结合奇异值分解和时间权重的协同过滤算法[J].计算机应用与软件,2010,27(6):256-259. 被引量:11

二级参考文献118

  • 1郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献458

同被引文献44

  • 1吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 2郑先荣,曹先彬.线性逐步遗忘协同过滤算法的研究[J].计算机工程,2007,33(6):72-73. 被引量:25
  • 3BREESE J S,HECKERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C].Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.Morgan Kaufmann Publishers Inc.,1998:43-52.
  • 4RESNICK P,IACOVOU N,Suchak M,et al.Group-lens:an open architecture for collaborative filtering of netnews[C].Proc.of the ACM Conf.on Computer Supported Cooperative Work,1994:175-186.
  • 5HOFMANN T.Probabilistic latent semantic analysis[C].Proc of the 15th Conf.on Uncertainty in Artificial Intelligence,1999:289-296.
  • 6Luo Si,Rong Jin.Flexible mixture model for collaborative filtering[C].Proc.of the 20th Int’l Conf.on Machine Learning,2003:704-711.
  • 7PORTEOUS I,BART E,WELLING M.Multi-HDP:a non parametric Bayesian model for tensor factorization[C].Proc.of the23rd National Conf.on Artificial Intelligence,2008:1487-1490.
  • 8KIM K H,CHOI S.Neighbor search with global geometry:a minimax message passing algorithm[C].Proceedings of the 24th International Conference on Machine Learning,2007:401-408.
  • 9CARROLL J D.“Minimax length links”of a dissimilarity matrix and minimum spanning trees[J].Psychometrika,1995,60(3):371-374.
  • 10SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C].Proceedings of the 10th International Conference on World Wide Web.ACM,2001:285-295.

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部