期刊文献+

基于HOG的快速行人计数算法

Fast Pedestrians Counting Algorithm Based on HOG
下载PDF
导出
摘要 为解决智能监控中空间受限情景下的行人计数问题,设计了基于HOG的行人识别与计数算法.通过限制HOG目标检测算法中图像的缩放范围,并设置感兴趣的检测区域,相比直接应用OpenCV函数实现的目标检测,其时间效率大幅提升;采用基于单计数线算法完成双向流量统计.三个不同走廊环境的实验表明,本文算法具有不依赖帧间运动信息的特点,可快速稳定的对空间受限情景下的行人进行计数. A rapid pedestrian detection and counting algorithm based on HOG is proposed for getting the pedestrian flow passing the confined space. The time efficiency is increased remarkable by restricting window shrink range and setting ROI. Counting method based on single line is presented for getting tow directions people number. Experiments in three different passageway show that the proposed method don't depend on moving information, besides it has the ability of fast and stable in confined space pedestrian counting.
出处 《计算机系统应用》 2014年第5期172-176,共5页 Computer Systems & Applications
基金 国家自然科学基金(61303087) 住房和城乡建设部科学技术项目(2011-K9-20)
关键词 智能监控 目标检测 行人计数 HOG intelligent monitoring object detection pedestrian counting HOG
  • 相关文献

参考文献10

  • 1Rossi M, Bozzoli A. Tracking and counting moving people.IEEE International Conference Image Processing. 1994. 212-216.
  • 2Barandiaran J, Murguia B, Boto F. Real-time people counting using multiple lines. 9th International Workshop on Image Analysis for Multimedia Interactive Services.2008. 159-162.
  • 3Albiol A, Mora I, Naranjo V. Real-time high density people counter using morphological tools. IEEE Trans. on Intelligent Transportation Systems, 2001, 2(4): 204-218.
  • 4Liu X, Tu P H, Rittscher J, Perera A , Krahnstoever N. Detecting and counting people in surveillance applications. IEEE Conference on Advanced Video and Signal Based Surveillance. 2005. 306-311.
  • 5Zeng C, Ma H. Robust head-shoulder detection by PCA- based multilevel HOG-LBP detector for people counting. IEEE Conference on Pattern Recognition. 2010. 2069-2072.
  • 6Sidla O, Lypetskyy Y, Brandle N, et al. Pedestrian detection and tracking for counting applications in crowded situations. IEEE International Conference on Video and Signal Based Surveillance. 2006. 70-70.
  • 7Dalai N. Finding People in Images and Videos. Institut National Polytechnique de Grenoble-INPG: 2006.
  • 8Zhu Q, Yeh MC, Cheng KT, Avidan S. Fast human detection using a cascade of histograms of oriented gradients. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006. 1491-1498.
  • 9李同治,丁晓青,王生进.利用级联SVM的人体检测方法[J].中国图象图形学报,2008,13(3):566-570. 被引量:12
  • 10Wojek C, Dork6 G~ Schulz A, Schiele B. Sliding-windows for rapid object class localization: A parallel technique. Pattern Recognition, 2008:71-81.

二级参考文献17

  • 1Mohan A, Papageorgiou C, Poggio T. Example-Based object detection in images by components [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(4) :349 -361.
  • 2Mikolajczyk K,Schmid C,Zisserman A. Human detection based on a probabilistic assembly of robust part detectors [ A ]. In:Proceedings of 8tb European Conference on Computer Vision [ C ]. Prague, Czech, 2004,69 - 82.
  • 3Ronfard R, Schmid C, Triggs B. Learning to parse pictures of people [ A ]. In:Proceedings of 6th European Conference on Computer Vision [ C ]. Copenhagen, Denmark ,2002:700 - 714.
  • 4Felzenszwalb P F, Huttenlocher D P. Pictorial stuctures for object recognition [ J]. International Journal of Computer Vision, 2005, 61(1) :55 -79.
  • 5Ioffe S, Forsyth D A. Probabilistic methods for finding people [ J]. International Journal of Computer Vision ,2001,43( 1 ) :45 -68.
  • 6Leibe B,Leonardis A, Schiele B. Pedstrain detection in crowed scenes [ A]. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition [ C ]. San Diego, CA, USA, 2005: 878 - 885.
  • 7Papageorgiou C, Poggio T. A trainable system for object detection [ J ]. International Journal of Computer Vision, 2000, 38 ( 1 ) : 15 -33.
  • 8Viola P,Jones M. Detecting pedestrians using patterns of motion and appearance [ A ]. In : Proceedings of the IEEE International Conference on Computer Vision [ C ]. Nice France,2003:734 - 741.
  • 9Dalai N,Triggs B. Histograms of oriented gradients for human detection [ A]. In :Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition [ C ]. Beijing, China,2005:886 - 893.
  • 10Lowe D G. Distinctive image features from scale-invariant keypoints [J ]. International Journal of Computer Vision, 2004, 60 (2): 91 - 110.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部