期刊文献+

云环境中面向随机任务的用户效用优化模型 被引量:7

Random Task-Oriented User Utility Optimization Model in the Cloud Environment
下载PDF
导出
摘要 资源分配方法和技术一直是云计算领域中的热点问题,现有的解决方案在资源分配与调度方面未能充分考虑用户的实际需要,首先通过引入用户效用的概念,建立了云环境中用户效用的描述模型,给出了用户对任务执行时间和费用满意程度的量化方法,并针对用户任务到达时间和任务类型的随机性,基于线性规划理论提出了云环境中面向用户效用的任务调度优化模型.该模型以任务完成的总效用值为目标,以用户任务的预期时间、费用和并行加速比为约束条件,能真实描述用户任务的随机性,面向时间和费用两个现实目标,求解出最合适的计算资源和排队秩序.最后通过实验表明,这种云环境中的任务调度方法能有效地满足用户对任务执行时间和费用的需求. Resource allocation methods and technology have always been a hot issue in the field of cloud computing. The existing solutions for resource allocation have not considered the actual requirement of the users so far. Through introducing the concept: utility, this paper proposes a description model for the user's utility in the cloud environment, which quantifies the user' satisfaction about the time and cost of the task in the cloud environment. Considering the randomness of the arrival time and the type of the tasks, this paper proposes an optimization model of task scheduling based on the theory of linear programming, using the basic concepts of user utility. This model takes the total utility value of the tasks completion as a goal, and takes the user tasks' expected time, cost and parallel speed-up ratio as the constraint condition. It can describe the randomness of the user's tasks, and choose the fittest resources which maximize the needs of every user while keeping the interests of other users. Finally, the simulation results verify the user utility optimization model of this paper.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第5期1120-1128,共9页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(61133005) 国家自然科学基金项目(61070057,61103047) 武汉大学软件工程国家重点实验室开放基金项目(SKLSE2012-09-18)
关键词 云计算 随机任务 用户效用 线性规划 资源分配 cloud computing random tasks user utility linear programming resource allocation
  • 相关文献

参考文献17

  • 1Armbrust A,Fox R, Griffith A,et al. A view of cloudcomputing [J]. Communications of the ACM, 2010,53(4):50-58.
  • 2宾雪莲,杨玉海,金士尧.一种基于分组与适当选取策略的实时多处理器系统的动态调度算法[J].计算机学报,2006,29(1):81-91. 被引量:17
  • 3Almulla S,Chan Y. Cloud computing security management[C]//Proc of the 2nd Int Conf on Engineering SystemsManagement and Its Applications. Piscataway,NJ: IEEE,2010: 1-7.
  • 4Thomopoulos N. Fundamentals of Queuing Systems [M],Berlin; Springer, 2012 : 19-25.
  • 5赵明宇,张田文.一种分布式计算环境下并行应用的调度算法[J].计算机研究与发展,2008,45(4):695-705. 被引量:3
  • 6Chen Weineng, Zhang Jun. An ant colony optimizationapproach to a grid workflow scheduling problem with variousQoS requirements [J]. IEEE Transon Systems, Man,andCybernetics, PartC: Applications and Reviews,2009, 39(1): 29-43.
  • 7Braun T,Siegel H,Beck N,et al. A comparison of elevenstatic heuristics for mapping a class of independent tasks ontoheterogeneous distributed computing systems [J]. Journal ofParallel and Distributed Computing, 2001, 61(6) : 810-837.
  • 8Chen Quan. Zhang Daqiang,Guo Minyi, et al. SAMR : Aself-adaptive mapReduce scheduling algorithm inheterogeneous environment [C]//Proc of the10thIntConfon Computer and InformationTechnology ( CIT 2010).Piscataway, NJ : IEEE 2010: 2736-2743.
  • 9Zaharia M, Konwinski A,Joseph A, et al. Improvingmapreduce performance in heterogeneous environments [C]//Procof the 8th USENIX Conf on OperatingSystems Designand Implementation. Berkeley,CA: USENIX Association,2008: 29-42.
  • 10Moise D,Trieu T,Bouge L, et al. Optimizing intermediatedata management in MapReduce computations [C]//Proc ofthe 1st Int Workshop on CloudComputingPlatforms. NewYork: ACM,20101:037-50.

二级参考文献24

  • 1Ramamritham K.. Scheduling algorithms and operating systems support for real-time systems. Proceedings of IEEE,1994, 82(1): 55-67.
  • 2Shin K. G. , Ramanathan R.. Real-time computing a new discipline of computer science and engineering. Proceedings of IEEE, 1994, 82(1): 6-24.
  • 3Goossens J. , Funk S. , Baruah S.. Priority-driven scheduling of periodic task systems on multiprocessors. Real-Time Systems, 2003, 25(2-3): 187-205.
  • 4Andersson B., Baruah S., Jonsson J. V.. Static-priority scheduling on multiprocessors. In: Proceedings of the IEEE Real-Time Systems Symposium, London, UK, 2001.
  • 5Burehard A. , Feng O. Y. , Son S. H.. A linear time online task assignment scheme for multiproeessor systems. In: Proeeedings of the 11th IEE Workshop on Real-Time Operating Systems and Software, Seattle, WA, 1994.
  • 6Khemka A. , Shyamasundar R. K.. An optimal multiprocessor real-time scheduling algorithm. Journal of Parallel and Distributed Computing, 1997, 43(1): 28-31.
  • 7Zhao W, , Ramamritham K. , Stankovie J. A,, Scheduling tasks with resource requirements in hard real-time systems.IEEE Transactions on Software Engineering, 1987, 13 (5):564-577.
  • 8Ramamritham K, , Stankovie A.J.. Efficient scheduling algorilhms for real.time multiprocessor systems. IEEE Transactions on Parallel and Dislributed Systems, 1990, 1(2): 184-194.
  • 9Manimaran T. , Murthy C. S. R.. An efficient dynamic scheduling algorithm for multiprocessor real time systems. IEEE Transactions on Parallel and Distributed Systems, 1998, 9(3):312-319.
  • 10Mittal A. , Manirnaran G. , Murthy C. S. R.. Integrated dynamie scheduling of hard and QOS degradable real-time tasks in multiprocessor systems. In: Proceedings of the 5th International Conference on Real-Time Computing Systems and Applications, Los Alamitos, CA, 1998,162-177.

共引文献18

同被引文献71

  • 1Ghodsi M Z A, Hindman B A, Konwinski, et al. Dominant resource fairness: Fair allocation of multiple resource types [C] //Proc of FAST'll. Berkeley, CA: USENIX Association, 2011 : 1-14.
  • 2Wei W, Baochun L, Ben L. Dominant resource fairness in cloud computing systems with heterogeneous servers [C]//Proc of the 33rd IEEE INFOCOM. Piscataway, NJ: IEEE 2014:583-591.
  • 3Xiao Z, Song W, Chen Q. Dynamic resource allocation using virtual machines for cloud computing environment [J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24 (6) : 1107-1117.
  • 4Jinhai W, Chuanhe H, Kai H, et ai. An energy-aware resource allocation heuristics for VM scheduling in cloud [C] //Proe of the 10th IEEE Int Conf on High Performance Computing and Communications & 2013 IEEE Int Conf on Embedded and Ubiquitous Computing(HPCC_EUC). Berlin: Springer, 2013:587-594.
  • 5Fei X, Fangming L, Hal J, et al. Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions[J]. Proceedings of the IEEE, 2014, 102(1): 11-31.
  • 6Sheng D, Wang C L. Dynamic optimization of muhiattribute resource allocation in self-organizing clouds [J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24(3): 464-478.
  • 7Baruah S K, Gehrke J E, Plaxton C G. Fast scheduling of periodic tasks on multiple resources [C] //Proc of the 9th Int Parallel Processing Syrup. Piscataway, NJ: IEEE, 1995~ 280-288.
  • 8Mo J H, Walrand J. Fair end-to-end window-based congestion control [J].IEEE/ACM Trans on Networking, 2000, 8(5)~ 556-567.
  • 9Blanquer J M, Ozden B. Fair queuing for aggregated multiple links [C] //Proc of ACM SIGCOMM Computer Communication Review. New York: ACM, 2001~ 189-197.
  • 10Liu Y, Knightly E. Opportunistic fair scheduling over multiple wireless channels [C] //Proc of the 22nd Annual Joint Conf on the IEEE Computer and Communications Societies. Piscataway, NJ ~ IEEE, 2003 : 1106-1115.

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部