期刊文献+

高速公路旅行时间的自适应插值卡尔曼滤波预测 被引量:11

Prediction of Expressway Travel Time Based on Adaptive Interpolation Kalman Filtering
下载PDF
导出
摘要 为解决高速公路收费站间非平稳交通流状态下因卡尔曼滤波算法自适应性能差而导致的旅行时间预测精度不稳定的问题,提出等间距插值和Sage-Husa自适应卡尔曼滤波相结合的预测算法。融合人工半自动收费和电子不停车收费数据计算平均旅行时间;引入等间距插值方法重构实时与历史旅行时间之间的时间序列;利用最小二乘法原理构建Sage-Husa自适应预测模型;开发旅行时间预测应用系统,实时主动预测高速公路站间旅行时间。在某示范路段的应用表明:在正常、事故、小长假3种交通流状态下,所提方法的所有周期平均相对误差均在7.5%内,事故周期平均相对误差均在10%内. Poor adaptability of Kalman filtering algorithm may result in inaccurate prediction of expressway travel time when the traffic flow between two expressway toll stations is non-stationary.In order to solve this problem,a prediction algorithm based on the equidistant interpolation and the Sage-Husa adaptive Kalman filtering is proposed. In the investigation,first,data from manual toll collection and electronic toll collection are merged together to cal-culate the average travel time.Then,the time series between real-time and historical travel time is reconstructed via the equidistant interpolation,and a prediction model based on the Sage-Husa adaptive Kalman filtering is con-structed with the help of the least square method.Moreover,a prediction system of expressway travel time is deve-loped and is finally applied to the real-time prediction of the travel time between two toll stations.Case study results of an expressway section show that,in the three states,namely,the normal state,the accident state,and the holi-day state,the proposed algorithm is able to restrict the average relative error of all periods or of a random accident within 7.5% or 10%,respectively.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期109-115,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"十一五"科技支撑计划项目(2011BAG07B05-2) 北京市首都公路发展集团有限公司科研课题(H120508)
关键词 高速公路旅行时间 收费数据 等间距插值 Sage-Husa自适应卡尔曼滤波 expressway travel time toll data equidistant interpolation Sage-Husa adaptive Kalman filtering
  • 相关文献

参考文献14

  • 1Lelitha Vanajakshi, Rilett Laurence R. Support vector ma- chine technique for the short term prediction of travel time [ C] //Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul:IEEE Intelligent Transportation Sys- tems Society,2007:600-605.
  • 2熊文华,徐建闽,林思.基于BP网络的浮动车与线圈检测数据融合模型[J].计算机仿真,2009,26(9):235-238. 被引量:7
  • 3Zhu T Y, Kong X P, Lv W F. Large-scale travel time pre- diction for urban arterial roads based on kalman filter [ C ]//Proceedings of 2009 International Conference on Com- putational Intelligence and Software Engineering. Wuhan: IEEE Wuhan Section,2009 : 1-5.
  • 4李慧兵,杨晓光.面向行程时间预测准确度评价的数据融合方法[J].同济大学学报(自然科学版),2013,41(1):60-65. 被引量:9
  • 5Luou Shen, Mohammed Hadi. Practical approach for trav- el time estimation from point traffic detector data [ J ]. Journal of Advanced Transportation, 2013,47 ( 5 ) : 526- 535.
  • 6Hwang K P, Lee W H, Wu W B. Travel time prediction by weighted fusion of probing vehicles and vehicle detectors data sources [ C] //Proceedings of the 12th International Confe-renee on ITS Telecommunications. Taibei: IEEE Communication Society ,2012:476-481.
  • 7李进燕,朱征宇,刘琳,崔明,刘微.基于简化路网模型的卡尔曼滤波多步行程时间预测方法[J].系统工程理论与实践,2013,33(5):1289-1297. 被引量:9
  • 8温惠英,徐建闽,傅惠.基于灰色关联分析的路段行程时间卡尔曼滤波预测算法[J].华南理工大学学报(自然科学版),2006,34(9):66-69. 被引量:23
  • 9Yang J S. Travel time prediction using the GPS test vehi- cle and kalman filtering techniques [ C ] Jj Procee-dings of the 2005 American Control Conference. Portland: A- merica Automatic Control Council,2005:2128-2133.
  • 10Mehmet Yildirimoglu, Nikolas Geroliminis. Experienced travel time prediction for congested freeways [ J ]. Trans- portation Research ( Part B ) : Methodological, 2013,53 :45-63.

二级参考文献63

共引文献54

同被引文献74

引证文献11

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部