期刊文献+

基于线性化运动方程的超低轨飞行器轨道修正算法

Orbit Correction Strategy of LEO Vehicle Based on Linearized Orbital Motion Equation
下载PDF
导出
摘要 超低轨飞行器受到大气的严重影响,需要不断地实施轨道修正才能在标称轨道附近飞行。文章针对超低轨飞行器的轨道保持问题,建立了考虑地球非球形J2项摄动和大气阻力摄动的线性化运动方程,给出了基于线性化方程的修正速度增量计算方法,并研究了补偿线性化误差的方法。数值仿真表明,该方法能够保证飞行器不超出要求的精度通道。对于轨道高度为120km的飞行器,飞行1h的最佳修正次数为6,所需速度增量为63.7971m/s。 It is very necessary to execute orbit correction for ultra-low-orbit vehicle , w hich is badly influenced by near-earth environment . The orbital motion equation which considered the non-spherical perturbation and atmospheric perturbation was linearized . Then , an impulse correction method was introduced and used to keep a near-earth vehicle flying along the standard orbit . Furthermore ,a method to eliminate errors caused by linearization was also studied . The feasibility of the correction method was validated by simulation . For a 120km-altitude vehicle , flying one hour , the optimal correction times is 6 , the required Dv is 63.797 1 m/s .
出处 《中国空间科学技术》 EI CSCD 北大核心 2014年第2期22-27,35,共7页 Chinese Space Science and Technology
关键词 轨道修正 线性化运动方程 摄动 冲量 超低轨 航天器 Orbit correction Linearized motion equation Perturbation Impulse thrust Ultra-low earth orbit Spacecraft
  • 相关文献

参考文献3

二级参考文献15

  • 1H Michalska, D Q Mayne. Moving horizon observers and observer- based contro [C]// 1. IEEE Trans. Aut. Control. USA: IEEE, 1995, 40(6): 995-1006.
  • 2Carter T E. Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point in Circular Orbit [J]. Journal of Guidance, Control, and Dynamics (S0731-5090), 1984, 7(6): 7 !0-716.
  • 3Hargraves C R, Paris S W. Direct Trajectory Optimization Using Nonlinear Programming and Collocation [J]. Journal of Guidance, Control and Dynamics (S0731-5090), 1987, 10(4): 338-342.
  • 4D W Dunham, Craig E Robert. Stationkeeping techniques for liberationpoint satellites [C]// AIAA/AAS Astrodynamics Conference, AIAA Paper 98-4466. USA: AIAA, 1998.
  • 5A Jadbabaie, J Yu, J Hauser. Receding horizon control nonlinear systems [C]// 1999 1EEE Conference on decision and control, Phoenix, AZ, USA. USA: IEEE, 1999: 3376-3381.
  • 6David C Redding, Neil J Adams. Linear-Quadratic stationkeeping for STS orbiter [J]. Journal of guidance, control and dynamics. (S0731-5090), 1989, 12(2): 248-255.
  • 7Benjamin E Joseph, Paul J Cefola. Low-thrust control law in equinoctial elements applied to Maintenance of "Teardrop" elliptical orbit constellations [C]//AAS-05-282. USA: AAS, 2005: 21-44.
  • 8C A Renault, D J Scheeres. Optimal placements of statistic maneuvers in an unstable orbital environment [C]// AIAA 2002-4725. USA; AIAA, 2002.
  • 9Thomas Burk. Attitude control performance during cassini trajectory correction maneuvers [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit. San Fran- cisco, California, 2005 : 1-23.
  • 10Louis A D' Amario. Mars exploration rovers navigation results[ C]//AIAA/AAS Atrodynamies Specialist Confer- ence and Exhibit. Providence, Rhode Island,2004 : 1-32.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部