期刊文献+

用CERES玉米生长模型预测优质蛋白玉米生物产量的形成 被引量:5

USE OF CERES-MAIZE MODEL TO PREDICT BIOMASS PRODUCTION OF QUALITY-PROTEIN MAIZE CULTIVARS
下载PDF
导出
摘要 在泰国北部清迈大学农学院的多种作物中心 (北纬 18°47′ ,东经 99°5 7′,海拔 30 0m)进行品种×播种期的双因素试验 ,用CERES玉米生长模型模拟栽培管理措施对不同品种的生长发育的影响。参试种为 :优质蛋白玉米Across876 3,PozaRica 876 3和普通玉米Suwan 1;播种期分别为 1994年 12月 2 0日 (PD1)、1995年 1月 5日 (PD2 )、1995年 1月2 0日 (PD3)。结果表明用CERES玉米模型模拟 ,试验 3个品种与播种期无相关关系 ,对叶片氮百分含量模拟较为准确 ,但对叶片数。 A two-factor (cultivar × sowing date) experiment was carried out at the Research Station of the Multiple Cropping Center,Faculty of Agriculture,Chiang Mai University of Thailand (18°47′N,99°57′ E,alt.300m) to study the influence of agronomic practices on the growth and development of different maize cultivars with the CERES Model.Two quality-protein maize cultivars,Across 8763 ans Poza Rica 8763,and a normal cultivar,Suwan 1, were sown on Dec.20,1994 and Jan.5 and Jan.20,1995.The Genotype Coefficients Calculator (GENCAL) was used to determine a set of genetic coefficients of the three cultivars,which were then used to simulate the effects of agronomic practices in Thailand,and predict N content in the leaves,leaf number and biomass production.The results showed that the model gave a fairly accurate estimate of leaf N,and overestimated the leaf number and the biomass of the shoots of the plants.
出处 《西南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第1期1-3,6,共4页 Journal of Southwest Agricultural University
基金 国家 8 63计划智能化农业信息技术应用示范工程项目
关键词 CERES玉米生长模型 模拟 叶片数 生物产量 优质蛋白玉米 产量形成 CERES-Maize model simulate leaf number biomass
  • 相关文献

参考文献11

  • 1[1]Penning de Vries, F.W.T., D.M. Jensen, H.F.M.,Berge, and A.H., Bakems. Simulation of Ecophysiologicalprocesses of Growth of Several Annual Crops[M].Wageningen:IRRI,Manila and Pudoc ,1989,83-85
  • 2[2]Jintrawat, A., C. Namuang, G. Uehara,and G .Y. Tsuji.[2] Jintrawat, A., C. Namuang, G. Uehara,and G .Y. Tsuji.Ex-ante screening of the ricve production strategies with theCERES-rice model[C].In:Preceeding of the Agricultural Production in the Pacific Regional Countries.”Australia:TheUniversity of Melbourne,1990,31.
  • 3[3]Lemmon,H.An expert system for cotton management[J].[3]Lemmon,H.An expert system for cotton management[J].Science,1986,(233):29-33.
  • 4[4]Duncan,W.G.,and A.L.Hatfield.A method for matring [4]Duncan,W.G.,and A.L.Hatfield.A method for matring the daily growth of corn kernels[J].Crop Sci,1964,(1):175-185.
  • 5[5]Hunt,L.A.IBSNAT's genetic coefficients:coping with[5]Hunt,L.A.IBSNAT's genetic coefficients:coping withgermplasm diversity[J].Agrotechnology Transfer,1988,(7):1-5.
  • 6[6]Watts W.R.Leaf extension in Zea mays.Ⅱ leaf extension in[6]Watts W.R.Leaf extension in Zea mays.Ⅱ leaf extension inresponse to independent variation of the temperature of the api-cal merristem,of the air around the leafs,and of the root-zone[J].J.Exp.Bot,1972,23,(76):713-721.
  • 7[7]Cooper P.,Law L.Enhanced soil temperature during very ear-[7]Cooper P.,Law L.Enhanced soil temperature during very ear-ly growth and association with maize development and yield inhighlands of Kenya[J].J Agric.Sci.(Cambridge),1978.
  • 8[8]Swan J.B,E.C.Schneider,J.F.Monecrief,A.E.Pauson.[8]Swan J.B,E.C.Schneider,J.F.Monecrief,A.E.Pauson.Estimating corngroth yield,and grain moisture from airgroing degree-days and residue cover[J].Agron.J,1987,(79):53-60.
  • 9[9]Ritchie J.T.Genetic specific data for modeling[C].In Pro-[9]Ritchie J.T.Genetic specific data for modeling[C].In Pro-ceedings of the International Symposium on Systems Approachesfor Agricultural Development,2-6 December ,Bangkok,Thailand.1991.
  • 10[10]Kirin,J.R.,and J.T. Ritchie.Rate of leaf primodia and[10]Kirin,J.R.,and J.T. Ritchie.Rate of leaf primodia andtip appearance of different maize genotypes in the field[M].Agro.Abstr.American Society of Agronomy,12.Madusion,WI,1981.

同被引文献84

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部