期刊文献+

分式布朗运动模型下的金融市场风险度量——以上证指数为例 被引量:5

Financial Market Risk Measurement in Fractional Brownian Motion Model——A case study of Shanghai composite index
下载PDF
导出
摘要 金融市场风险度量在金融风险度量乃至于整个金融风险管理过程中都具有十分重要的地位。本文基于2013年至2014年上证指数的收盘数据,通过对分式布朗运动驱动的随机微分方程进行离散化处理,用其解(分式几何布朗运动)模拟上证指数的未来走势。在此基础上,采用Monte Carlo模拟法模拟出上证指数的价值分布与损益分布。最后,在95%的置信水平下计算出上证指数的在险价值(VaR)。相对于传统股票价格预测模型——布朗运动模型,分式布朗运动模型更符合金融问题本身;利用Monte Carlo模拟法不再借助于股票价格历史数据。故而本模型对市场金融风险的预测精度更高。 Financial market risk measurement in financial risk measurement and even the entire process of financial risk management , has the very important position .In this paper , based on the closing data of Shanghai composite index , we discretize the stochastic differential equation driven by frational Brownian motion and use its solution to simulate the index movement in the future .On this basis,simulate value dis-tribution of the index ,and profit and loss ditribution by using Monte Carlo simulation method .Lastly, with the confidence level of 95%,we calculate “Value at Risk”( VaR) of the index.Compared with tradition-al stock price forecasting model -Brownian motion model , fractional Brownian motion model is more conformed to the financial problem itself;Monte Carlo simulation method is no longer with the aid of the stock price history data , so in this paper , the market of financial risk prediction accuracy is higher .
作者 郭精军 田婧
出处 《兰州商学院学报》 2014年第2期89-94,共6页 Journal of Lanzhou Commercial College
基金 甘肃省高校人文社科重点研究基地(兰州商学院甘肃经济发展数量分析研究中心)项目(SLYB201202) 甘肃省高等学校基本科研业务费项目(2012年) 兰州商学院教改研究课题(20110211)
关键词 MONTE Carlo模拟法 分式布朗运动 在险价值 Monte Carlo simulation method fractional Brownian motion Value at Risk
  • 相关文献

参考文献9

  • 1Kolmogorov A. Wienersche Spiralen und einige andere in-teressante Kurven im Hilbertschen Raum [M]. C. R.(Doklady) Acad. URSS(N.S) ,26:115 .118,1940.
  • 2Mandelbrot B,Van Ness J. Fractional Brownian motions,fractional noises and applications [M] . SIAM Rev. 10:422 .437,1968.
  • 3Mishura Y. Stochastic Calculus for Fractional BrownianMotions and Related Processes [M]. Lect. Notes inMath. 1929, Berlin and Heidelberg : Springer - Verlag,2008.
  • 4Rostek S.,Sch. bel R. A note on the use of fractionalBrownian motion for financial modeling [J] . Econ. Mod-el. ,30:30 -35,2013.
  • 5Song L.,Wang W. Solution of the fractional Black -Scholes option pricing model by finite difference method[J] . Abstr. Appl. Analy. ,2013 :1 .10,2013.
  • 6Wei Y.,Chen W.,Lin Y. Measuring daily Value - at -Risk of SSEC index : a new approach based on multifrac-tal analysis and extreme value theory [J]. Physica A :Stat. Mech. Appl. ,392(9) :2163 .2174,2013.
  • 7Dieker T. Simulation of fractional Brownian motion [M].www. google, cn.
  • 8Kloeden P.,Neuenkirch A. ,Pavani R. Multilevel MonteCarlo for stochastic differential equations with additivefractional noise [J]. Ann. Oper. Res.,189:255 .276,2011.
  • 9Coeurjolly J. Inference statistique pour les mouvementsbrowniens fractionnaires et multifractionnaires [M]. PhD thesis,Universite Joseph Fourier, 2000.

同被引文献41

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部