期刊文献+

针对典型单体结构的数值流形解与弹性力学解对比

The Contrast of Numerical Manifold Method Solution and Elasticity Solution for Typical Monomer Structure
下载PDF
导出
摘要 针对典型的单体结构悬臂梁的力学行为进行分析。阐述了受集中荷载悬臂梁位移解析公式,利用数值流形方法计算了受集中荷载下悬臂梁的位移情况。将数值计算结果与弹性力学解析解进行对比验证,证明了数值流形方法中加密数学覆盖的收敛性及必要性。通过分析数值计算结果与解析解的误差,表明误差来源于解析解的推导过程,在确定边界条件时解析解忽略了悬臂梁固定端的转动而使解析解存在误差,对解析解的误差提出修正方案并重新与数值解对比,验证了数值流形方法对简单结构体比常规解析解有更高的准确性。 For analysis of a typical monomer structure of mechanical behavior, the cantilever beam with con centrated load displacement analytic formula is expounded, the numerical manifold method is used to calculate the displacement of cantilever beam under concentrated load. The results of numerical calculation compared with ana lytical solutions, the convergence and necessity of dense mathematical cover in numerical manifold method are proved . Through the analysis of the error between the numerical results and the analytical solution, indicate that the error derived from the analytical solution, analytic solution which ignoring the rotation of fixed end in boundary conditions makes the error exists, the correction scheme of analytical solution is proposed and compared with nu merical solution again, to verify the numerical manifold method for monomer structure has higher accuracy than con ventional analytic solution.
作者 孙振东 王媛
出处 《科学技术与工程》 北大核心 2014年第10期167-170,190,共5页 Science Technology and Engineering
关键词 数值流形方法 数学覆盖 弹性力学 解析解 numerical manifold method mathematical covers elasticity analytical solution
  • 相关文献

参考文献7

  • 1石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 2Shi Genhua.Discontinuous deformation analysis:a new numerical model for the statics and dynamics of block system.Berkeley:Department of Civil Engineering,University of California,1988.
  • 3林绍忠.单纯形积分的递推公式[J].长江科学院院报,2005,22(3):32-34. 被引量:12
  • 4武艳强,陈光齐,江在森.任意多面体重心及积分的精确算法[J].科学技术与工程,2011,11(27):6515-6520. 被引量:7
  • 5龙驭球,包世华.结构力学Ⅰ,Ⅱ[M].北京:高等教育出版社,2006.
  • 6铁摩辛柯 古地尔著 徐芝纶译.弹性力学[M].北京:高等教育出版社,1990.275-331.
  • 7裴觉民.数值流形方法与非连续变形分析[J].岩石力学与工程学报,1997,16(3):279-292. 被引量:67

二级参考文献13

  • 1林绍忠.单纯形积分的递推公式[J].长江科学院院报,2005,22(3):32-34. 被引量:12
  • 2骆少明,张湘伟,吕文阁,姜东茹.三维数值流形方法的理论研究[J].应用数学和力学,2005,26(9):1027-1032. 被引量:9
  • 3龙驭球.有限元法概论.北京:人民教育出版社,1988.
  • 4Chen G Q, Ohnishi Y, Ito T. Development of high order manifold method. ICADD-2, Kyoto, Japan, 1997.
  • 5Shi G H, Goodman. Discontinuous deformation analysis. In:Proceed- ings of the 25th U. S. Symposium on Rock Mechanics, Evanston, 25-27 June 1984:269-277.
  • 6Shi G H. Discontinuous deformation analysis:a new numerical model for the statistics and dynamics of deformable block structures. Engineering Computations, 1992; 9(2) :157-168.
  • 7Shi G. H. Manifold method. Proc of the 1st 1nt. Forum on DDA Simulation of Discontinuous Media. Bekerley: [S. n. ], 1996 : 52- 204.
  • 8Shi G H. Three dimensional discontinuous deformation analysis. In: Rock Mechanics in the National Interest. Elsworth, Tinucci and Heasley, 2001 : 1421-1428.
  • 9石根华.数值流形方法与非连续变形分析.装觉民,译.北京:清华大学出版社,1997.
  • 10陈景良 陈向晖.特殊矩阵[M].北京:清华大学出版社,2003..

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部