期刊文献+

基于降噪自动编码器的不平衡情感分类研究 被引量:12

Research of Unbalance Sentiment Classification Based on Denoising Autoencoders
下载PDF
导出
摘要 目前,网络评论的情感分类研究大部分是不平衡样本数据,正向样本的数量一般远大于负向样本,对这种不平衡样本集进行分类时容易产生少数类误差较大的问题。而且由于网络评论的表达形式多变,不易获取到大量的有监督的数据。针对上述问题,对无监督的不平衡网络评论情感分类进行研究。首先通过改进降噪自动编码器,提高少数类的特征值,避免分类样本向多数类偏移。然后将获取的特征值作为k-means算法的输入值,实现了无监督的样本分类。实验证明,该算法对不平衡率较高的样本具有良好的适应性,从而验证了算法的有效性。 Currently, the network comments sentiment classification studies usually use unbalanced sample data in which the number of positive samples generally much larger than the negative sample. That imbalance sample classification is prone to minority class large error. In addition the network comments expression varied, it is difficult to get a large number of supervised data. In order to solver these problems, the Web reviews imbalance unsu- pervised sentiment classification is studied. First, through improving the Denoising Autoencoders, minority class characteristic value is increased to avoid the majority class classification sample deviation. Then the eigenvalues is put in k-means algorithm as input values to achieve unsupervised classification. Experimental results show that the algorithm has a good adaptability for higher imbalance sample data, and verify the effectiveness of the algorithm.
出处 《科学技术与工程》 北大核心 2014年第12期232-235,共4页 Science Technology and Engineering
基金 欠发达地区工业化与信息化融合及其系统动力机制研究(11FJL007) 广西教育厅人文社科研究项目(SK13YB069)资助
关键词 情感分类 深度学习 降噪自动编码器 不平衡数据 sentiment classification deep learning denoising autoencoder unbalance data
  • 相关文献

参考文献7

二级参考文献67

  • 1项贻强,李毅,周畅,周逊盛.桥梁结构在线健康监测预警系统Ⅰ——监测评估预警体系和模块设计[J].长沙交通学院学报,2009,25(1):26-31. 被引量:10
  • 2刘胥影,吴建鑫,周志华.一种基于级联模型的类别不平衡数据分类方法[J].南京大学学报(自然科学版),2006,42(2):148-155. 被引量:23
  • 3GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 4RESNICK P,IACOVOU N,SUCHAK M,et al.GroupLens:an open architecture for collaborative filtering of netnews[C] //Proc of ACM Conference on Computer-Supported Cooperative Work.New York:ACM Press,1994:175-186.
  • 5SHARDANAND U,MAES P.Social information filtering:algorithms for automating "word of mouth"[C] //Proc of ACM Conference on Human Factors in Computing Systems.New York:ACM Press,1995:210-217.
  • 6HILL W,STEAD L,ROSENSTEIN M,et al.Recommending and evaluating choices in a virtual community of use[C] //Proc of ACM Conference on Human Factors in Computing Systems.New York:ACM Press,1995:194-201.
  • 7BREESE J,HECHERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C] //Proc of the 14th Conference on Uncertainty in Artificial Intelligence.1998:43-52.
  • 8LU Yue,ZHAI Cheng-xiang,SUNDARESAN N.Rated aspect summarization of short comments[C] //Proc of the 18th International Conference on World Wide Web.New York:ACM Press,2009:131-140.
  • 9SARWAR B M,KARYPIS G,KONSTAN J A,et al.Application of dimensionality reduction in recommender system:a case study[C] //Proc of Web KDD Workshop.2000.
  • 10AGGARWAL C C.On the effects of dimensionality reduction on high dimensional similarity search[C] //Proc of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.New York:ACM Press,2001.

共引文献43

同被引文献82

  • 1余晃晶.小波降噪阈值选取的研究[J].绍兴文理学院学报(自然科学版),2004,24(9):34-38. 被引量:10
  • 2韦振中,黄廷磊.基于支持向量机和遗传算法的特征选择[J].广西工学院学报,2006,17(2):18-21. 被引量:12
  • 3徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107
  • 4HOBFOLL S E. Social and Psychological Resources and Adaptation [J]. Review of General Psychology, 2002(4): 307-324.
  • 5MOHAMED M Mostafa. More than Words: Social Networks~ Text Mining for Consumer Brand Sentiments[J]. Expert Systems with Applications, 2013,40(10) : 4241-4251.
  • 6BENGIO Y,DELALLEAU O. On the Expressive Power of Deep Architectures [C]. Proc.of the 22nd Intemational Conference on Algorithmic Learning Theory, 2011:18-36.
  • 7LAROCHELLE H, MANDEI. M,PASCANU R,et al. Learning Algorithms for the Classification Restricted Boltzmann Maehine[J].Journal of Machine Learning Research, 2012,13 : 643 - 669.
  • 8BENGIO Y, COURVII.LE A, BINCENT P. Unsupervised Feature Learning and Deep Learning; a Review and New Perspectives[R].Montreal: Department of Computer Science and Operations Research, University of Montreal, 2012.
  • 9Schafer J B, Dan F, Herlocker J, et al. Collaborative Fil- tering Recommender Systems [ M ]// The Adaptive Web. Springer Berlin Heidelberg, 2007:291-324.
  • 10Rieei F, Rokach L, Shapira B. Introduction to recommen- der systems handbook [ M ]// Recommender Systems Hand- book. 2010 : 1-35.

引证文献12

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部