摘要
The interracial assembly of photo-induced dimerization of atypical anthracene-containing amphiphilic dendron and host-guest interaction with γ-cyclodextrin has been investigated. It has been proved that even without long alkyl chain the amphiphilic dendron could still form stable Langmuir monolayer at the air/water interface. Through the host-guest interaction,γ-cyclodextrin can be used to encapsulate two headgroups of amphiphilic dendron in the antiparallel direction. However, the formed host-guest complex was sensitive to the surface pressure. Slight compression of surface pressure led amphiphilic dendron to reassemble into nanofibers through the strong π-π stacking between headgroups. On the other hand, under in situ irradiation, the amphiphilic dendron was stabilized in the cavity of γ- cyclodextrin through headgroup dimerization and the host-guest complex further irregularly aggregated to nanoparticles. Meanwhile, γ-cyclodextrin, as a silencer, blocked the supramolecular chirality transfer. Our conclusion was demonstrated through UV/vis, FT-IR, CD spectrum and AFM images, respectively.
The interracial assembly of photo-induced dimerization of atypical anthracene-containing amphiphilic dendron and host-guest interaction with γ-cyclodextrin has been investigated. It has been proved that even without long alkyl chain the amphiphilic dendron could still form stable Langmuir monolayer at the air/water interface. Through the host-guest interaction,γ-cyclodextrin can be used to encapsulate two headgroups of amphiphilic dendron in the antiparallel direction. However, the formed host-guest complex was sensitive to the surface pressure. Slight compression of surface pressure led amphiphilic dendron to reassemble into nanofibers through the strong π-π stacking between headgroups. On the other hand, under in situ irradiation, the amphiphilic dendron was stabilized in the cavity of γ- cyclodextrin through headgroup dimerization and the host-guest complex further irregularly aggregated to nanoparticles. Meanwhile, γ-cyclodextrin, as a silencer, blocked the supramolecular chirality transfer. Our conclusion was demonstrated through UV/vis, FT-IR, CD spectrum and AFM images, respectively.
基金
supported by the National Natural Science Foundation of China(Nos.21021003 and 50673095)
the Basic Research Development Program(Nos.2007CB808005 and 2009CB930802)
the Fund of the Chinese Academy of Sciences