期刊文献+

A FAMILY OF THE LOCAL CONVERGENCE OF THE IMPROVED SECANT METHODS FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION SUBJECT TO BOUNDS ON VARIABLES

A FAMILY OF THE LOCAL CONVERGENCE OF THE IMPROVED SECANT METHODS FOR NONLINEAR EQUALITY CONSTRAINED OPTIMIZATION SUBJECT TO BOUNDS ON VARIABLES
原文传递
导出
摘要 This paper studies a family of the local convergence of the improved secant methods for solving the nonlinear equality constrained optimization subject to bounds on variables. The Hessian of the Lagrangian is approximated using the DFP or the BFGS secant updates. The improved secant methods are used to generate a search direction. Combining with a suitable step size, each iterate switches to trial step of strict interior feasibility. When the Hessian is only positive definite in an affine null subspace, one shows that the algorithms generate the sequences converging q-linearly and two-step q-superlinearly. Yhrthermore, under some suitable assumptions, some sequences generated by the algorithms converge locally one-step q-superlinearly. Finally, some numerical results are presented to illustrate the effectiveness of the proposed algorithms.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第2期307-326,共20页 系统科学与复杂性学报(英文版)
基金 supported by the partial supports of the National Science Foundation under Grant No.10871130 the Ph.D. Foundation under Grant No.20093127110005 of Chinese Education Ministry
关键词 Affine scaling local convergence secant methods second order correction. 非线性等式 局部收敛性 等式约束优化 Hessian矩阵 约束优化问题 可行性试验 变量范围 BFGS
  • 相关文献

参考文献10

  • 1Han S P, Superlinearly convergent variable metric algorithms for general nonlinear programming problem, Math. Programming, 1976, 11(1): 263-282.
  • 2Tapia R A, Diagonalized multiplier methods and quasi-Newton methods for constraints optimiza- tion, J. Optim. Theory Appl., 1977, 22(2): 135-194.
  • 3Fontecilla R, Local convergence of secant methods for nonlinear constrained optimization, SIAM J. Numer. Anal., 1988, 25(3): 692-712.
  • 4Fletcher R, Practical Methods of Optimization, John Wile and Sons, New York, 1987.
  • 5Kanzow C and Klug A, On affine-scaling interior-point Newton methods for nonlinear mini- mization with bound constraints, Computational Optimization and Applications, 2006, 35(2): 177-197.
  • 6Vicente L N, Local convergence of the affine-scMing interior-point Mgorithm for nonlinear pro gramming, Computational Optimization and Applications, 2000, 17(1): 23-35.
  • 7Fontecilla R, Steihaug T, and Tapia R A, A convergence theory for a class of quasi-Newton methods for constrained optimization, SIAM J. Numer. Anal., 1987, 24(5): 1133-1151.
  • 8Broyden C G, Dennis Jr J E, and More J J, On the local and superlinear convergence of quasi- Newton methods, J. Inst. Math. Appl., 1973, 12(3): 223-245.
  • 9Griewank A and Toint P L, Local convergence analysis for partitioned quasi-Newton updates, Numer. Math., 1982, 39(3): 429-448.
  • 10Hock W and Schittkowski K, Test Examples for Nonlinear Programming Codes, Springer-Verlag, Berlin, 1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部