期刊文献+

On the μ-invariant of two-variable primitive p-adic L-functions 被引量:1

On the μ-invariant of two-variable primitive p-adic L-functions
原文传递
导出
摘要 Using the idea of Sinnott,Gillard and Schneps,we prove theμ-invariant is zero for the two-variable primitive p-adic L-function constructed by Kang(2012),which arises naturally in the study of Iwasawa theory for an elliptic curve with complex multiplication(CM). Using the idea of Sinnott, Gillard and Schneps, we prove the μ-invariant is zero for the two-variable primitive p-adic L-function constructed by Kang (2012), which arises naturally in the study of Iwasawa theory for an elliptic curve with complex multiplication (CM).
出处 《Science China Mathematics》 SCIE 2014年第6期1149-1154,共6页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11171141) the State Key Development Program for Basic Research of China (973 Program) (Grant No. 2013CB834202) Natural Science Foundation of Jiangsu Province of China (NSFJ) (Grant No. BK2010007) a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (Grant No. 708044)
关键词 CM elliptic curve p-adic L-function μ-invariant L-函数 乘法 复数 椭圆
  • 相关文献

参考文献9

  • 1Coates J, Fukaya T, Kato K, et al. The GL2 main conjecture for elliptic curves without complex multiplication. Publ Math IHES, 2005, 101: 163-208.
  • 2Coates J, Sujatha R. Cyclotomic Fields and Zeta Values. Berlin-Heidelberg-New York: Springer, 2006.
  • 3Coates J, Sujatha R. Iwasawa theory of elliptic curves with complex multiplication. Preprint.
  • 4Gillard R. Transformation de Mellin-Leopoldt des fonctions elliptiques. J Number Theory, 1987, 25: 379-393.
  • 5Kang Y. On two-variable primitive p-adic L-functions. Asian J Math, 2012, 16: 171-188.
  • 6Schneps L. On the μ-invariant of p-adic L-functions attached to elliptic curves with complex multiplication. J Number Theory, 1987, 25: 20-33.
  • 7Sinnott W. On the μ-invariant of the Γ-transform of a rational function. Invent Math, 1984, 75: 273-282.
  • 8Sujatha R. On the μ-invariant in Iwasawa theory. Preprint, 2012.
  • 9Yager R. On two variable p-adic L-functions. Ann Math, 1982, 115: 411-449.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部