摘要
Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage (I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.
Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage (I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.