期刊文献+

一个有效的稀疏轨迹数据相似性度量 被引量:3

An Effective Measure for Calculating the Similarity of Sparse Trajectory Data
下载PDF
导出
摘要 随着GPS设备和无线通信等技术的快速发展,移动对象的轨迹数据的多样性和复杂性与日递增,对于这些数据的挖掘和分析越显重要。在观察时间内,轨迹是稀疏的—移动对象的轨迹点在时间维度上分布是不均匀,即轨迹点之间的时间间隔不是相等的,而且,移动对象的轨迹的时间跨度占整个观察时间的比例很小。传统的轨迹相似性方法不适用于分析稀疏轨迹的相似性。针对移动对象的稀疏轨迹进行研究,提出了一种基于关键点和时间分段的稀疏轨迹相似性度量,并在此基础上给出了一个相似性计算算法STS(Sparse Trajectory Similarity Computation),在真实数据集上的实验表明STS算法较现有算法具有更好的运行效率和准确度。 With the rapid expansion of GPS equipment and wireless communication,diversity and complexity of moving objects' trajectory data increase,so it's important to analyze these trajectory data.In observation time,the trajectory is sparse:moving objects' trajectory points distribute unevenly in time dimension,that is time intervals between trajectory points are not equal and time span of moving objects' trajectory is a small fraction of the total observation time.Conventional trajectory similarity methods are not suitable for analyzing the sparse trajectory similarity.This paper focuses on moving objects' sparsity issue in trajectory similarity and proposes a sparse trajectory similarity measurement based on key point and time slicing,and proposes a similarity computation algorithm (Sparse Trajectory Similarity Computation).Experimental results based on real datasets confirm the effectiveness and efficiency of the proposed algorithm.
作者 肖啸骐
出处 《微型电脑应用》 2014年第4期25-30,共6页 Microcomputer Applications
关键词 轨迹数据 相似性 数据挖掘 Trajectory Data Similarity Data Mining
  • 相关文献

参考文献12

  • 1Jie Liu,Bodhi Priyantha,Ted Hart,Heitor S.Ramos,Antonio Alfredo Ferreira Loureiro,Qiang Wang.Energy efficient GPS sensing with cloud offloading[C].SenSys,2012:85-98.
  • 2Shuo Shang,Ruogu Ding,Kai Zheng,Christian S.Jensen,Panos Kalnis,Xiaofang Zhou.Personalized trajectory matching in spatial networks[J].VLDB,2013,7.
  • 3Hongbin Zhao,Han Qilong,Pan Haiwei,Yin Guisheng.Spatio-temporal similarity measure for trajectories on road networks[C].ICICSE,2009:189-193.
  • 4杨泽雪,郝忠孝.空间数据库中的组障碍最近邻查询研究[J].计算机研究与发展,2013,50(11):2455-2462. 被引量:6
  • 5Pekka Siirtola,Perttu Laurinen,Juha Roning.A Weighted Distance Measure for Calculating the Similarity of Sparsely Distributed Trajectories[C].ICMLA,2008:802-807.
  • 6Alexandre Hervieu,Patrick Bouthemy,Jean-Pierre Le Cadre.A HMM-based method for recognizing dynamic video contents from trajectories[C].ICIP,2007,4:533-536.
  • 7Horst Bunke.On a relation between graph edit distance and maximum common subgraph[J].Pattern Recognition Letters,1997,18(8):689-694.
  • 8Philip Bille.A survey on tree edit distance and related problems[J].Theoretical Computer Science,2005,337(1-3):217-239.
  • 9Zaiben Chen,Heng Tao Shen,Xiaofang Zhou,Yu Zheng,Xing Xie[C].SIGMOD,2010:255-266.
  • 10Lei Chen,Raymond T.Ng.On the marriage of Lp-norms and edit distance[C].VLDB,2004:792-803.

二级参考文献21

  • 1Hu W M, Tan T N, Wang L, etal. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2004, 34(3) :334-352.
  • 2Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories [C]// Proc 18th Int Conf on Data Engineering. San Jose, CA: IEEE Press, 2002 : 673-684.
  • 3Fatih P. Trajectory distance metric using hidden markov model based representation[EB/OL]. (2004) [ 2008 ]. http://www. merl. com/reports/docs/ TR2004-030. pdf.
  • 4Hervieu A, Bouthemy P, Le Cadre J-P. A HMM- based method for recognizing dynamic video contents from trajectories[C]// Proc IEEE Int Conf on Image Processing. San Antonio, TX: IEEE Press, 2007, 4: Ⅳ-533-Ⅳ-536.
  • 5Fatih P, Tetsuji H. Event detection by eigenvector decomposition using object and frame features[C]// Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition Workshops. Los Alamitos: IEEE Computer Society Press, 2004: 114-114.
  • 6Li C, Biswas G. A Bayesian approach to temporal data clustering using hidden markov models[C]// Proc 7th Int Conf on Machine Learning. Stanford University: Morgan Kaufmann, 2000: 543-550.
  • 7Levenshtein V I. Binary codes capable of correcting deletions, insertions and reversals[J]. Soviet Physics Doklady, 1966, 10(8):707-710.
  • 8Zheng J B, Feng D D, Zhao R C. Trajectory matching and classification of video moving objects[C]//Proc IEEE 7th Workshop on Multimedia Signal Processing. Shanghai, China: IEEE Press, 2005: 1-4.
  • 9Chen L, Ozsu M T, Oria V. Robust and fast similarity search for moving object trajectories[C]// Proc ACM SIGMOD Int Conf on Management of Data. Baltimore, Maryland, USA: ACM, 2005: 491-502.
  • 10Chen L, Ng R. On the marriage of Lp-norms and edit distance[C]//Proc 30th Int Conf on Very Large Data Bases. Toronto, Canada: Morgan Kaufmann, 2004: 792- 803.

共引文献18

同被引文献23

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部