期刊文献+

Logistic映射分支值的最优化算法 被引量:3

Optimum Algorithm for Bifurcation of Logistic Mapping
下载PDF
导出
摘要 以具有生态特征的代数迭代系统Logistic映射动力系统的倍周期分叉问题为例 ,研究了精确计算迭代系统分支点的方法·以迭代过程关系构成目标函数 ,参数为设计变量 ,迭代变量的边界为约束 ,建立关于分支值计算的新方法含约束条件的最优化程序算法·这种方法将约束转化为惩罚项 ,采用惩罚函数法巧妙地对所建立的最优化问题求解 。 The accurate computation for getting ramification of algebra iterated system was studied based on the analyses of the double period bifurcation of Logistic dynamic mapping system with ecological characteristic. Regarding iterated processes as objective function,parameters of algebra iterated system as design variables,and boundary condition of iterated variables as constrains,a new optimum method was proposed,which was used to calculate bifurcation of Logistic mapping. Turning constrains into punishing items,the punishing function method was used to deal with the optimum problem and accurate results were acquired. The Method Solving ramification of algebra iterated system rapidly and exactly is suggested,which is a shortcut to chaos.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2000年第5期580-582,共3页 Journal of Northeastern University(Natural Science)
基金 原冶金工业部"八五"科技攻关项目! (冶 85 80 1 0 4 0 9)
关键词 LOGISTIC映射 最优化算法 混沌 分支值 代数迭代系统 动力系统 Logistic mapping ramification optimum algorithm chaos
  • 相关文献

参考文献4

  • 1齐东旭,分形及其计算机生成,1995年,20页
  • 2赫柏林,物理学进展,1983年,3卷,3期,213页
  • 3薛嘉庆,最优化原理与方法,1983年
  • 4Li T Y,Am Math Monthly,1975年,82卷,985页

同被引文献19

  • 1齐东旭.分形及其计算生成[M].北京:科学出版社,1995.20-24.
  • 2Takens F. Detecting strange attractors in turbulence [J ].Lect Notes in Math, 1981,891( 1 ):366- 381.
  • 3Cvitanovic P. Universality in chaos [ M]. 2nd ed. Berkeley:IOP Publishing. 1989.56 - 70.89 - 95.
  • 4Li T, Yorke J A. Period tree implies chaos[J]. Amer Math Monthly, 1975,18(2) :985 - 1001.
  • 5Mandelbrot B B. The fractal geometry of nature [ M ]. NewYork: Plenum Press, 1982.25 - 30.
  • 6Chang G Z, Sederberg T. Over and over again [M]. NewYork: Academic Press. 1994. 231 - 240.
  • 7Feigenbaum M J. Universality behavior in nonlinear system[M]. Los Alamos: Los Alamos Science, 1980.14- 17.
  • 8Li T, Yorke J A. Period tree implies chaos[J]. Amer Math Monthly, 1975,18(2):985-1001.
  • 9Arechi F T, Boccaletti S, Ciofini M, et al. The control of chaos: theoretical schemes and experimental realizations[J]. Int J Bifurcation & Chaos, 1998,8(8):1643-1655.
  • 10Lindner J F, Ditto W. Removal, suppression and control of chaos by nonlinear design[J]. Applied Mechanics Review, 1995,48:795-807.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部