期刊文献+

一种高效的混合蝙蝠算法 被引量:24

Efficient hybrid bat algorithm
下载PDF
导出
摘要 针对基本蝙蝠算法存在收敛速度慢,易陷入局部最优,求解精度低等缺陷,提出一种融合局部搜索的混合蝙蝠算法用于求解无约束优化问题。该算法利用混沌序列对蝙蝠的位置和速度进行初始化,为全局搜索的多样性奠定基础;融合Powell搜索以增强算法的局部搜索能力,加快收敛速度;使用变异策略在一定程度上避免算法陷入局部最优。选取几个标准测试函数进行仿真实验,结果表明:与基本蝙蝠算法和粒子群优化算法相比,混合蝙蝠算法具有更好的寻优性能。 The Bat Algorithm(BA)has a few disadvantages in the global searching, including slow convergence speed, high possibility of being trapped in local optimum and low solving precision. A hybrid bat algorithm based on Powell search method is proposed to solve unconstrained optimization problems. Firstly, chaotic sequence is used to initiate indi-vidual position and velocity, which strengthens the diversity of global searching. It combines the bat algorithm and Powell search to enhance the ability of local search and improve the convergence speed of algorithm. Mutation strategy is used to prevent the algorithm into a local optimum in a certain extent. The experimental results show that the proposed algorithm is more effective and feasible than the standard BA and Particle Swarm Optimization(PSO)algorithm.
出处 《计算机工程与应用》 CSCD 2014年第7期62-66,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61174113) 湖南省教育厅一般项目(No.11C1131,No.11C0598) 湖南省重点建设学科资助 湖南省科技厅项目(No.2014GK3033)
关键词 蝙蝠算法 混沌 Powell搜索方法 变异 粒子群优化 chaotic Powell search method hybrid
  • 相关文献

参考文献16

  • 1Hamzacebi C.Improving genetic algorithms' performance by local search for continuous function optimization[J]. Applied Mathematics and Computation, 2008, 196(1): 309-317.
  • 2Zhang Zhihui, Zhang Jun, Li Yun, et al.Orthogonal learning particle swarm optimization[J].IEEE Transactions on Evo- lutionary Computation, 2011,15 (6) : 832-847.
  • 3Wang Yong, Cai Zixing, Zhang Qingfu.Differential evolu- tion with composite trial vector generation strategies and control parameters[J].IEEE Transactions on Evolu- tionary Computation, 2011,15( 1 ) : 55-66.
  • 4龙文,梁昔明,肖金红,阎纲.一种动态分级的混合粒子群优化算法[J].控制与决策,2009,24(10):1513-1516. 被引量:18
  • 5王志,胡小兵,何雪海.一种新的差分与粒子群算法的混合算法[J].计算机工程与应用,2012,48(6):46-48. 被引量:10
  • 6Yang X S.Nature inspired meta-heuristic algorithms[M]. 2nd ed.Frome, UK: Luniver Press, 2010 : 97-104.
  • 7刘长平,叶春明.具有混沌搜索策略的蝙蝠优化算法及性能仿真[J].系统仿真学报,2013,25(6):1183-1188. 被引量:76
  • 8Yang X S, Gandomi A H.Bat algorithm: a novel approach for global engineering optimization[J].Engineering Com- putation, 2012,29(5) : 464-483.
  • 9Gandomi A H, Yang X S, Alavi A H, et al.Bat algorithm for constrained optimization tasks[J].Neural Computing & Applications, 2013,22(6) : 1239-1255.
  • 10盛晓华,叶春明.蝙蝠算法在PFSP调度问题中的应用研究[J].工业工程,2013,16(1):119-124. 被引量:42

二级参考文献58

共引文献212

同被引文献201

引证文献24

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部