期刊文献+

面向Android手机平台异常入侵检测的研究 被引量:2

Research on Android mobile phone platform for anomaly intrusion detection
下载PDF
导出
摘要 智能手机应用普及的同时,入侵的危害也越来越严重。针对Android智能手机平台,结合入侵检测的相关研究,解决智能手机入侵检测的问题。采取在Android平台下采集系统和网络特征数据,上传至远程云服务器,在服务器上利用SVM进行分析处理,以给出合理的入侵与否的判断,进而尽快更新手机的处理机制。实验结果表明,既减少了智能手机资源消耗,又能对手机的异常入侵尽快做出反应和处理。 With the popularity of smart mobile phone, the harm of intrusion is more and more serious. This paper is, based on the Android smartphone platform, combined with intrusion detection research, to solve the problem of intrusion detection of smartphone. In order to give a reasonable judgment and update the phone as soon as possible, the paper collects the system and the network characteristic data on the Android platform, and uploads them to the remote cloud servers, then analyzes using Support Vector Machine(SVM). The experimental results show that, taking the kind of mechanism not only can reduce resource consumption of smart phones, but also can handle and response the intrusion as quickly as possible.
作者 杨午圣 孙敏
出处 《计算机工程与应用》 CSCD 2014年第7期71-74,79,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61100058) 山西省自然科学基金(No.2011011014-2) 山西省高校教学改革重点项目(No.J2013010)
关键词 智能手机 ANDROID平台 入侵检测 支持向量机(SVM) smartphone Android platform intrusion detection
  • 相关文献

参考文献14

  • 1周忠军,苏红旗.Android智能手机入侵检测系统设计[J].科技资讯,2012,10(18):30-30. 被引量:2
  • 2Anderson J P.Computer security threat monitoring and sur- veillance[R].J P Anderson Co, 1980.
  • 3姚君兰.入侵检测技术及其发展趋势[J].信息技术,2006,30(4):172-175. 被引量:9
  • 4傅德胜,姜怀琴.基于手机平台的入侵检测系统的研究[J].计算机安全,2009(3):46-48. 被引量:4
  • 5Shabtai A,Kanonov U, Elovici Y.Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method[J].The Journal of Systems and Soft- ware,2010,83(8) : 1524-1537.
  • 6Witten I H, Frank E.Data mining: practical machine learning tools and techniques[M].2nd ed.San Francisco, US :Morgan Kaufmann,2005.
  • 7Chaugule A, Xu Zhi, Zhu Senchu.A specification based intrusion detection framework for mobile phones[C]//Pro- ceedings of the 9th International Conference(ACNS' 11), 2011 : 19-37.
  • 8Chen S cTung B, Schnackenberg D.The common intrusiondetection framework-data formats[R].1998.
  • 9吴亚峰,索依娜.Android核心技术与实例详解——Android开发起步[M].北京:电子工业出版社,2010.
  • 10Vapnik V N.The nature of statistical learning theory[M]. New York: Spring-Verlag, 1995.

二级参考文献19

  • 1陆荣秀.支持向量机技术及其应用[J].科技情报开发与经济,2006,16(14):159-160. 被引量:3
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..
  • 3Trevor Hastie, Robert Tibshirani, Jerme Friedman. The Elemerits of Statistical Learning: Data Mining, Inference, and Prediction[M].范明译.北京:电子工业出版社,2004.
  • 4Anderson J P.Computer Security Threat Monitoring and Surveillance[R].Technical report,James P Anderson Co.,Fort Washington,Pennsylvania,1980.
  • 5Denning D E.An intrusion-detection model[J].IEEE Trans.on Software Engineering,1987,SE-13(2):222-232.
  • 6Wenke Lee.A Data Mining Framework for Building Intrusion Models[C].In IEEE Symposium on Security and Privacy,1999:120-132.
  • 7Forrest S,Hofmeyr S A.Computer immunology[J].Communications of the ACM,1997,40(10):88-96.
  • 8Steven Andrew Hofmeyr.An Immunological Model of Distributed Detection and Its Application to Computer Security[D].Ph.D.dissertation of University of New Mexico,USA,1999.
  • 9Spafford E H.Intrusion Detection Using Autonomous Agents[J].Computer networks,1999.
  • 10360安全中心2011年中国手机安全状况报告.

共引文献91

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部