期刊文献+

基于特征选择与谱聚类的视觉词典构建算法 被引量:1

Feature selection and spectral clustering method for visual vocabulary generation
下载PDF
导出
摘要 传统的视觉词典一般通过K-means聚类生成,一方面这种无监督的学习没有充分利用类别的先验信息,另一方面由于K-means算法自身的局限性导致生成的视觉词典性能较差。针对上述问题,提出一种基于谱聚类构建视觉词典的算法,根据训练样本的类别信息进行分割并采用动态互信息的度量方式进行特征选择,在特征空间中进行谱聚类并生成最终的视觉词典。该方法充分利用了样本的类别信息和谱聚类的优点,有效地解决了图像数据特征空间的高维性和结构复杂性所带来的问题;在Scene-15数据集上的实验结果验证了算法的有效性。 Generally,the K-means clustering method is applied to generate visual dictionary. However, on the one hand this unsupervised learning does not make use of the priori information of category. On the other hand, the own limitations of K-means clustering result in poor performance of visual dictionary. Aiming at this problem, this paper presents a new visual dictionary construction algorithm based on spectral clustering. The training samples are divided according to the category information firstly and carry out feature selecting using dynamic mutual information. And then it generates the final visual dictionary by spectral clustering in the feature space. This method not only takes advantage of the category information but also the advantages of spectral clustering fully and effectively solves the problems caused by high dimen-sionality and structural complexity of feature space. The experiments on Scene-15 database prove the effectiveness of the proposed method.
作者 王鑫 李璐
出处 《计算机工程与应用》 CSCD 2014年第7期133-138,共6页 Computer Engineering and Applications
基金 安徽省教育厅自然科学项目(No.KJ2013B067 No.KJ2012B034)
关键词 场景识别 视觉词典 K-MEANS聚类 谱聚类 互信息 scene recognition visual dictionary K-means clustering spectral clustering mutual information
  • 相关文献

参考文献2

二级参考文献26

  • 1Haken H. Synergetic Computers and Recognition-A Topdown Approach to Neural Nets [ M ]. Berlin: Springer-Verlag, 1991.
  • 2鄂大伟.多媒体基础与应用[M].北京:高等教育出版社,2001.
  • 3Osmar Rachid Zaiane. Resource and Knowledge Discovery from the Internet and Multimedia Repositories [ D ]. Simon Fraser University, 1999.
  • 4Kaufman L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis[ M]. New York: John Wiley & Sons, 1990:23-42.
  • 5陈新泉.k-中心点轮换法及确定合适聚类数目的一种新方法[OL].中国科技论文在线,2006-03-02.
  • 6[1]Ermolaeva O, Rastogi M, Pruitt K, et al., Data management and analysis for gene expression arrays. Nature Genetics, 1998,20:19~23.
  • 7[2]Welford S, Gregg J, Chen E, et al., Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Research, 1998, 26:3059~3065.
  • 8[3]Charlie C, Chen Y. DNA microarray technology and its applications. Biotechnology Advances, 2000, 18(1): 35~46.
  • 9[4]Brazma A, Vilo J. Gene expression data analysis. FEBS Lett., 2000, 480(1):17~24.
  • 10[5]David R, Michael G. Interative visualization and exploration of relationships between biological objects. Trends in Biotechnology, 2000,18:487~494.

共引文献10

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部