期刊文献+

基于DWT和Tucker分解的超光谱图像压缩技术研究

Hyperspectral image compression based on Discrete Wavelet Transform and Tucker decomposition
下载PDF
导出
摘要 由于超光谱图像(HSI)的大数据量,HSI压缩技术的研究近年来越来越受到关注。鉴于此,提出了一种基于离散小波变换(DWT)和Tucker分解的HSI压缩方法。充分利用HSI频域和空域的信息,对HSI频带的小波变换系数进行Tucker分解,先利用小波变换将HSI分解为不同的子图像,然后利用Tucker分解实现子图像的压缩;最后用实际的HSI对算法的有效性进行评估。与其他算法的比较结果表明该算法具有更好的性能;实验还显示了压缩HSI在监督分类方法中的作用。 Recently, researching for compression Hyper Spectral Image(HSI)technology becomes more and more popular, because HSI needs large storage space. In order to solve the above problem, a new method of compression HSI is pro-posed, which is based on Discrete Wavelet Transform(DWT)and Tucker decomposition. It makes full use of frequency domain and space domain information of HSI, and wavelet transform parameter of HSI frequency band is decomposed by Tucker decomposition. Firstly, HSI is decomposed into different sub images. Then, sub image is compressed with decom-posing Tucker. Finally, effectiveness of the method is evaluated in experiments with real HSI, and compared with other algorithm, effectiveness and performance of the new algorithm is more reliable and better. In addition, new compression HSI method has a good performance in supervised classification.
出处 《计算机工程与应用》 CSCD 2014年第7期170-174,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61272540)
关键词 压缩 超光谱图像 噪声抑制 小波变换 Tucker分解 compression noise reduction wavelet transform Tucker decomposition
  • 相关文献

参考文献12

  • 1Grahn H F, Geladi P.Techniques and applications of hyperspectral image analysis[M].Chichester,U K:Wiley, 2007.
  • 2Huo C,Zhang R,Peng T.Lossless compression of hyper- spectral images based on searching optimal multibands for prediction[J].IEEE Geosci Remote Sens Lett,2009,6 (2) :339-343.
  • 3Wang J, Chang C.Independent component analysis based dimensionality reduction with applications in hyperspectral image analysis[J].IEEE Trans on Geosci Remote Sens, 2006,44(6) : 1586-1600.
  • 4Tang X, Pearlman W A.Three-dimensional wavelet-based compression of hyperspectral images[J].Hyperspectral Data Compression, 2006,34(2) : 273-278.
  • 5Du Q, Fowler J E.Hyperspectral image compression using JPEG2000 and principal component analysis[J].IEEE Geosci Remote Sens Lett,2007,4(2) :201-205.
  • 6Adjeroh D A, Sawant S D.Error-resilient transmission for 3D DCT coded video[J].IEEE Trans on Broadcast,2009, 55(2) : 178-189.
  • 7Garcia-Vilchez F,Munoz-Mari J,Zortea I B M,et al.On the impact of lossy compression on hyperspectral image classification and unmixing[J].IEEE Geosci Remote Sens Lett,2011,8(2) :253-257.
  • 8Renard N,Bourennane S.Dimensionality reduction based on tensor modeling for classification methods[J].IEEE Trans on Geosci Remote Sens,2009,47(4) : 1123-1131.
  • 9Kolda T, Bader B.Tensor decompositions and applications[J]. SIAM Rev, 2009,51 (3) :455-500.
  • 10Cichocki A, Zdunek R, Phan A H, et al.Nonnegative matrix and tensor factorizations[M].Chichester, U K: Wiley, 2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部