摘要
为了有效求解多目标优化问题,找到分布宽广、均匀的Pareto解集,提出了一个基于空间网格划分的进化算法。将目标空间网格化,利用网格的位置,删除大量被支配个体。在杂交算子中利用了单个目标最优的个体信息,以增加非劣解的宽广性。利用一种新设计的基于最大距离排序的方法删除非劣解集中多余个体。数值实验表明提出的算法是可行有效的。
In order to solve the multi-objective optimization problem effectively and find a set of Pareto solutions with uniform distribution and wide range, this paper proposes an evolutionary algorithm based on a space-gridding search tech-nique. The decision space is divided into grids, and a large number of dominant individuals are deleted by using the loca-tion of the grids. In the crossover operator, the information of optimal individuals for each objective function is used to increase the range of Pareto front. A new designed method based on maximum distance sorting is applied to delete the unwanted individuals in non-dominant solution sets. Numerical experiments show that the proposed algorithm is feasible and efficient.
出处
《计算机工程与应用》
CSCD
2014年第8期53-56,117,共5页
Computer Engineering and Applications
基金
国家自然科学基金(No.61065009)
青海省自然科学基金(No.2013-z-937Q)
关键词
多目标优化问题
进化算法
PARETO最优解
空间网格划分
multi-objective optimization problem
evolutionary algorithms
Pareto optimal solutions
space-gridding