期刊文献+

双正则化参数的L_2-SVM参数选择 被引量:2

Parameter optimization of L_2-SVM with two regularization parameters
下载PDF
导出
摘要 寻找支持向量机(SVM)的最优参数是支持向量机研究领域的热点之一。2范数软间隔SVM(L2-SVM)将样本转化成线性可分,在原始单正则化参数L2-SVM的基础上,提出双正则化参数的L2-SVM,获得它的对偶形式,从而确定了最优化的目标函数。然后结合梯度法,提出了一种新的支持向量机参数选择的新方法(Doupenalty-Gradient)。实验使用了10个基准数据集,结果表明,Doupenalty-Gradient方法是可行且有效的。对于实验所用的样本,极大地改善了分类精度。 Searching the optimal parameters is one of the most important area of SVM and often named as parameter opti-mization or parameter selection. The L2-SVM can convert the samples into linearly separable problem. Based on the per-formance, this paper proposes the L2-SVM with two regularization parameters, and the dual formulation of L2-SVM with two regularization parameters is deduced. Combining the objective function established on minimizing the VC dimension and the gradient method, a new algorithm called Doupenalty-Gradient is present. Ten benchmark datasets are used in the experiments, and the classifying accuracy is improved obviously. The experimental results show the wonderful property and the feasibility of Doupenalty-Gradient.
出处 《计算机工程与应用》 CSCD 2014年第8期99-102,246,共5页 Computer Engineering and Applications
关键词 统计学习理论 支持向量机 VC维 参数选择 statistical learning theory support vector machines VC dimension parameter selection
  • 相关文献

参考文献18

  • 1Vapnik V N.Statistical learning theory[M].New York: Wiley, 1998.
  • 2Boser B E, Guyon I M, Vapnik V N.A training algo- rithm for optimal margin classifiers[C]//5th Conference on Computational Learning Theory, Pittsburgh, USA, 1992 : 144-152.
  • 3Geng Bo, Yang Linjun, Xu Chao, et al.Ranking model adaptation for Domain-Specific search[J].IEEE Transac- tions on Knowledge and Data Engineering,2012,24(4): 745-758.
  • 4Anguita D,Ghio A,Oneto L,et al.In-sample and out-of- sample model selection and error estimation for support vector maehines[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(9) : 1390-1406.
  • 5Osuna E, Freund R, Girosi F.Support vector machines: training and application, Technical Report, AIM1602[R]. [S.1.]:MIT AI Lab, 1997.
  • 6Chew H G,Crisp D J, Bogner R E,et al.Target detection in radar imagery using support vector machines with training size biasing[C]//6th International Conference on Control, Automation, Robotics and Vision, Singapore, 2000.
  • 7Zhao M Y,Ren J, Ji L P,et support vector machines and al.Parameter selection of genetic algorithm based on change area search[J].Neural Computer & Applic, 2012,12(1) : 1-8.
  • 8Gomes T,Prudencio R, Soares C,et al.Combining meta- learning and search techniques to select parameters for support vector machines[J].Neurocomputing, 2012,75 ( 1 ) : 3-13.
  • 9Yu L,Yao X,Wang S,et al.Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection[J].Expert Systems with Applications, 2011,38 ( 12 ) : 15392-15399.
  • 10Rubio G,Pomares H, Rojas l,et al.A heuristic method for parameter selection in LS-SVM: application to time series prediction[J].International Journal of Forecasting, 2011,27(3) :725-739.

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部