期刊文献+

基于聚类分割和纹理合成的图像修复改进算法 被引量:2

Improved algorithm for image inpainting based on clustering segmentation and texture synthesis
下载PDF
导出
摘要 Criminisi提出的基于样本的图像修复技术需要在整幅图像中遍历样本,代价太大,并可能因选择错误的样本,不断迭代更新后而导致错误信息累积,使修复结果出现较大的偏差。同时,考虑到Criminisi算法中优先权函数的计算失误可能导致修复结果中出现结构失真,由此提出一种基于聚类分割和纹理合成的图像修复改进算法,将目标样本块的搜索限定在与源样本块所覆盖的类别一致的区域当中。在像素点优先权计算中,引入该像素点邻域灰度梯度差值信息,提出更为合理的优先权计算公式,以最大限度保证复杂场景中边缘优先传递,并在置信度更新项中有差别地对待新填充像素点。通过实验证明,改进算法不仅解决了Criminisi算法可能存在的结构偏差延续问题,修复视觉效果更加符合人们的主观感受,而且大大缩短了修复时间。 Criminisi proposed exemplar-based image inpainting techniques need to traverse the whole image exemplar, it is too costly, and may choose the wrong exemplar, constantly updates iteration error messages resulting cumulative, so that a greater deviation may be in inpainting results. Meanwhile, considering the Criminisi algorithm priority function cal-culation may lead to a structural distortion in inpainting results, which proposes an improved algorithm for image inpainting based on clustering segmentation and texture synthesis, the search will be limited to the same categories zone with the source exemplar covered. In the pixel priority calculation, the pixel neighborhood gray gradient difference information is introduced, the priority of more reasonable formula is proposed to ensure maximum edge preferentially transmitted in complex scenes and update entries in confidence difference to treat newly filled pixels. The experimental results show that the improved algorithm not only solves the Criminisi algorithm possible continuation of structural bias problem, repairing the visual effect is more in line with people’s subjective feelings, but also greatly shortens the repair time.
出处 《计算机工程与应用》 CSCD 2014年第8期131-135,共5页 Computer Engineering and Applications
基金 湖南省教育厅一般项目(No.11C1182) 湖南省教育厅一般项目(No.11C1183) 湖南省科技计划项目(No.2011TP4016-3) 2012年湘南学院基金项目(No.44) 湖南省教育厅教改项目(湘教通[2010]243号No.394) 湘南学院项目(No.2010Y015)
关键词 聚类分割 纹理合成 优先权 邻域灰度梯度差值 clustering segmentation texture synthesis priority neighborhood gray gradient difference
  • 相关文献

参考文献16

  • 1张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:159
  • 2Chan T F,Shen J H.Non texture inpainting by Curvature- Driven Diffusions(CDD)[J].J Visual Comm Image Rep, 2001,12(4) :436-449.
  • 3Efros A A, Leung T K.Texture synthesis by non-parametric sampling[C]//Proceedings of the IEEE Computer Society International Conference on Computer Vision.Washington DC : IEEE Computer Society, 1999 : 1033-1038.
  • 4Bertalmio M,Vese L,Sapiro G,et al.Simultaneous struc- ture and texture image inpainting[J].IEEE Transactions on Image Processing, 2003,12 ( 8 ) : 18-20.
  • 5Drori l,Daniel C O,Hezy Y.Fragment-based image com- pletion[J].ACM Transactions on Graphics, 2003,22 (3) : 303-312.
  • 6Criminisi A, Perez P,Toyama K.Object removal by exemplar- based inpainting[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,USA,2003, 2: 18-20.
  • 7Criminisi A,Perez P,Toyama K.Region filling and object removal by examplar-based image inpainting[J].lEEE Transactions on Image Processing,2004, 13(9) : 1200-1212.
  • 8Komodakis N,Tziritas G.Image completion using global optimization[C]//IEEE Computer Society Conf on Com- puter Vision and Pattern Recognition,2006:442-452.
  • 9Hsin H F, Leou J J, Lin C S.Image inpainting using structure- guided priority belief propagation and label transforma- tions[C]//2010 20th International Conference on Pattern Recognition, 2010 : 4492-4495.
  • 10Bugeau A, Bertalmio M, Caselles V.A comprehensive framework for image inpainting[J].IEEE Trans on Image Process,2010,19(10) -2634-2645.

二级参考文献76

  • 1王树根,郑精灵.基于纹理匹配的影像缺损信息填充方法[J].测绘通报,2004(12):21-23. 被引量:11
  • 2薛峰,张佑生,江巨浪,胡敏.一种快速、有效的纹理合成方法[J].合肥工业大学学报(自然科学版),2005,28(11):1361-1364. 被引量:6
  • 3Bertalmio M,Vese L,Sapiro J,et al.Simultaneous Structure and Texture Image Inpainting[J].IEEE Trans.of Image Processing,2003,12(8):882-889.
  • 4Chan T,Shen J H.Mathematical Models for Local Non-texture Inpaintings[J].SIAM Journal on Applied Mathematics,2002,62(3):1019-1043.
  • 5Chan T,Shen J H.Non-texture Inpainting by Curvature-driven Diffusions (CDD)[J].J.Visual Comm.Image Rep.2001,12(4):436-449.
  • 6Criminisi A,Perez P,Toyama K.Object Removal by Exemplar-based Inpainting[C]//Proc.of Conf.on Comp.Vision Pattern Rec..Madison,WI,USA:[s.n.],2003.
  • 7Criminisi A,Perez P,Toyama K.Region filling and object removal by exemplar-based image Inpainting[J].IEEE Transactions on Image Processing,2004,13(9):1200-1212.
  • 8Cheng W H,Hsieh C W,Lin S K,et al.Robust algorithm for exemplar-based image inpainting[C]//The International Conference on Computer Graphics,Imaging and Vision (CGIV2 005).Beijing:[s.n.],2005:64-69.
  • 9Efros A,Leung T.Texture synthesis by non-parametric sampling[C]//Proc Int Conf Computer Vision,Kerkyra Greece,September,1999:1033-1038.
  • 10Criminisi A,Perez P,Toyama K.Object removal by exemplar-based inpainting[C]//Proc Conf Comp Vision Pattern Rec,Madison WI,2003:721-728.

共引文献194

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部