摘要
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,具有训练速度快、全局最优和泛化能力优异等优点。采用1991~2013年上证指数对算法性能进行训练,2014年数据做测试,对100个测试数据仿真结果表明,复相关系数高达0.9935,极限学习机是一种预测精度高、误差小的证券指数预测算法,预测结果可以为用户提供有价值的参考意见。
For the features of stock index such as randomness , time-variant, volatile and non -linear, and for the defects of traditional linear prediction methods like low accuracy , we propose a method for forecasting stock index based on extreme learning machine.Extreme Learning Machine has the merits of high training speed , excellent global optimum and generalization ability , etc., which overcome the shortcomings of the BP neural network such as low training speed , over-fitting , local minima.Using the data of Shanghai Stock Ex-change from 1991 to 2013 on the performance of the algorithm and data of 2014 for testing , 100 test data simu-lation results show that the multiple correlation coefficient is up to 0.9935.Extreme Learning Machine is a stock index prediction algorithm with high precision and small error , which can provide a valuable reference for users.
出处
《华北科技学院学报》
2014年第4期57-60,共4页
Journal of North China Institute of Science and Technology
基金
中央高校基本科研业务费资助(3142014127)
华北科技学院重点学科应用数学项目基金资助(HKXJZD201402)
关键词
BP神经网络
ELM极限学习机
上证开盘指数
预测
BP neural network
ELM extreme learning machine
Index of Shanghai Stock Exchange
prediction