期刊文献+

基于增量式专家与模糊自适应控制参数在线整定方法的控制系统研究 被引量:1

Control Parameters Online Tuning Method and Control System Based on the Incremental Expert Fuzzy Adaptive Control Method
下载PDF
导出
摘要 针对基于推理系统的控制参数在线整定方法性能提升问题,提出了一种基于专家规则表推理增量的控制参数在线整定方法(Expert Adjust PID,EA-PID)和一种基于模糊推理增量的控制参数在线整定方法 (Fuzzy Adjust PID,FA-PID);研究通过将专家规则表和模糊推理机直接推理控制参数的方法改为推理修正量的方法,并采用计算机仿真的手段对EA-PID、FA-PID以及现有的专家规则表直接推理控制参数方法 (Expert PID,E-PID)、模糊推理机直接推理控制参数方法 (Fuzzy PID,F-PID)进行对比分析,通过调整专家规则表量值和模糊隶属度函数参数,验证了新方法的可行性、可靠性和新方法在动态性能、稳态性能、抗扰性能及平稳性方面的提升。 In order to improvethe performance problems especially in engineering practice, control parameters online-- tuning method based on the incremental expertand incrementalfuzzy adaptive PID control method is described in this paper. E--PID, F--PID, EA--PID, FA-- PID control systems are modeled and compared by computer simulation experiments. The feature of EA-- PID and FA-- PID is the change proportions of control parameters are calculated firstly according to the current system output, and then the new control parameters are calculated according to the above change proportions. By adjusting the magnitude of expert rule table and parameters of fuzzy member- ship ofthe comparative experiments, better feasibility and reliability, faster speed, lower steady--state error featuresof proposed methods are verified.
出处 《计算机测量与控制》 北大核心 2014年第4期1148-1151,1154,共5页 Computer Measurement &Control
基金 国家自然科学基金项目(61174109) 国家发明专利(201110023946.6) 实用新型专利(201120020012.2)
关键词 控制参数整定 在线整定 专家 模糊 自适应 control parameter tuning online tuning experts fuzzy adaptive
  • 相关文献

参考文献12

  • 1DinhQuang T,Kwan A K,et al.Design of an online tuning modi fied-grey fuzzy PID controller for nonlinear systems [A].2011 In ternational Conference on Fluid Power and Mechatronics(FPM),2011:481-486.
  • 2邱黎辉,阙沛文,毛义梅.模糊PID控制在中央空调系统中的应用研究[J].计算机测量与控制,2004,12(1):57-59. 被引量:30
  • 3Bennett S.The past of PID controller [J].Annual Reviews in Con-trol,2001,25:43-53.
  • 4Wang Y.Modified genetic algorithm approach to design an optimal PID controller for AC-DC transmission systems [J].Electrical Power and Energy Systems,2002,(24):59-69.
  • 5Lee S,Fernando R T,et al.Simulation of fuzzy-modified expert PID algorithms for blood glucose control [J].10th International Conference on,Control,Automation,Robotics and Vision,2008.2008:1583-1589.
  • 6Ping X,Haichao W,et al.(2012).Based on the fuzzy PID brush-less DC motor control system design [A].2012 International Con-ference on,Measurement,Information and Control(MIC),2012:703-706.
  • 7Hongbo S,Chuang H.A BP Wavelet Neural Network Structure for Process Monitoring and Fault Detection [A].WCICA 2006.The.Sixth World Congress on,Intelligent Control and Automation,2006,(2):5675-5681.
  • 8Sharifian M B B,Mirlo A,et al.Self-adaptive RBF neural net-work PID controller in linear elevator [A].2011 International Con-ference on Electrical Machines and Systems(ICEMS),2011:1-4.
  • 9王普,刘经纬,李会民,等.自适应小波神经网络异常检测故障诊断分类系统及方法[P].中国专利:201110023943.2,2012-08-30.
  • 10刘经纬,王普,杨蕾.时间序列预测与智能控制结合的参数在线整定方法与系统[P].中国专利:201210365314.2,2012-09-27.

二级参考文献9

共引文献36

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部