期刊文献+

云计算环境下基于微粒群的虚拟机任务调度算法 被引量:7

Virtual Machine Task Scheduling Algorithm Based on PSO in Cloud Computing Environment
下载PDF
导出
摘要 为提高云计算环境中虚拟机任务调度的执行效率和充分发挥云计算技术优势,提出一种基于微粒群的虚拟机任务调度算法——PSOTS算法;PSOTS算法以完成任务最短时间为目标,首先通过设计一种新型的编码方式使得连续的微粒群算法适用于离散的虚拟机任务调度问题;然后引入禁忌搜索算法增强种群的多样性以避免微粒因早熟而陷于局部最优的问题;实验证明,在50~500个任务的情况下,PSOTS算法调度效率优于Min—min算法和遗传算法(GA),有效缩短任务执行时间和解决云环境下虚拟机任务调度问题。 This paper proposed a virtual machine tasks scheduling algorithm named PSOTS that based on particle swarm algorithm to im- prove tasks scheduling execution efficiency of virtual machines in the cloud computing environment and to give full play to the advantage o~ cloud computing technology. PSOTS algorithm takes shortest time of task execution as goal. First, try to make the continuous particle swarm algorithm applied to discrete virtual machine tasks scheduling problem by a new encoding method; Then the TS algorithm is intro- duced to enhance the diversity of group and avoid particles being trapped in local optimum caused by premature convergence; Finally, ac- cording to the experiment, In the case of 50--500 tasks, it turns out that the efficiency of PSOTS scheduling is superior to the Min--min al- gorithm and GA algorithm. PSOTS algorithm effectively reduces the execution time of tasks and solves the problem of VM tasks scheduling in the cloud computing environment.
出处 《计算机测量与控制》 北大核心 2014年第4期1189-1192,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(61202376) 上海市教委科研创新项目(13YZ075)
关键词 云计算 虚拟机 微粒群算法 禁忌搜索算法 cloud computing virtual machine PSO algorithm TS algorithm
  • 相关文献

参考文献7

二级参考文献62

  • 1张伟哲,刘欣然,云晓春,张宏莉,胡铭曾,刘凯鹏.信任驱动的网格作业调度算法[J].通信学报,2006,27(2):73-79. 被引量:33
  • 2张建勋,贺毅朝,田俊峰.基于市场的网格资源分配管理模型研究[J].计算机技术与发展,2007,17(2):193-196. 被引量:4
  • 3米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 4Foster I,Zhao Yong, Raicu I, et al. Cloud computing and grid computing 360-degree compared [ C ]//Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC : IEEE Computer Society ,2008 : 1 - 10.
  • 5Armbrust M, Fox A, Griffith R, et al. Above the clouds: A Berkeley view of cloud computing [ EB/OL]. [ 2010- 01-25 ]. http://www, berkeley, edu/Pubs/TechRpts/ 2009/EECS-2009-28. pdf.
  • 6Waldspuger C A, Hogg T, Huberman B. Spawn : A distributed computational economy [ J ]. IEEE Transactions on Software Engineering, 1992,18 (2) : 103-177.
  • 7The CLOUDS Lab. Gfidsim[ EB/OL]. [2010-06-25 ]. http: //www. cloudbus, org/gridsim/.
  • 8Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithrns [J]. Software: Practice and Experienee(SPE), 2011,41(1) :23-50.
  • 9Mauro Andreolini, Sara Casolari, Michele Colajanni. Dynamic load management of virtual machines in a cloud architecture[J]. Department of Information Engi- neering, 2010 : 201-204.
  • 10Daniel Versick, Djamshid Tavangarian. Reducing energy consumpution by load aggregation with an optimiazed dynamic live migration of virtual machines[C]// International Conference on P2P. Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2010: 164-170.

共引文献259

同被引文献47

  • 1黄纬,温志萍,程初.云计算中基于K-均值聚类的虚拟机调度算法研究[J].南京理工大学学报,2013,37(6):807-812. 被引量:17
  • 2徐雷,张云勇,吴俊,房秉毅.云计算环境下的网络技术研究[J].通信学报,2012,33(S1):216-221. 被引量:35
  • 3董耀祖,周正伟.基于X86架构的系统虚拟机技术与应用[J].计算机工程,2006,32(13):71-73. 被引量:63
  • 4SINA E, ALI P, MAZIAR G. Structure-Aware Online Virtual Machine Consolidation for Datacenter Energy Improve- ment in Cloud Computing [J]. Computers and Electrical Engineering, 2015, 42(8):74--89.
  • 5ANTON B, RAJKUMAR B. Open Stack Neat: A Framework for Dynamic and Energy-Effient Consolidation of Virtual Machines in Open Stack Clouds [J]. Concurrency Computation, 2015, 27(5):1310--1333.
  • 6TAIMUR A S, OMER R, PETER B. VM Informant: An Instrumented Virtual Machine to Support Trustworthy Cloud Computing [J].International Journal of High Performance Computing and Networking, 2015, 8(3) : 222--234.
  • 7THOMAS H, KYRRE B, ANIS Y. Saving the Planet with Bin Packing-Experineces Using 2D and 3D Bin Packing of Virtual Machines for Greener Clouds [C]. Washington D C: Proceedings of the International Conference on Cloud Com- puting Technology and Science Cloud Corn, 2015.
  • 8AKSHI B, ISHA J, KUMAR K V. Optimized Virtual Machine Tree Based Scheduling Technique in Cloud Using K-way Trees [C]. Beijing~ Proceedings International Confrence on Cognitive Computing and Information Processing, 2015.
  • 9WALTER C. Network Performance of Multiple Virtual Machine Live Migration in Cloud Federations[J]. Journal of In- ternet Services and Applications, 2015, 6(1): 234--241.
  • 10朱海,王宇平.安全驱动的实时任务调度遗传算法[J].系统工程与电子技术,2010,32(4):854-859. 被引量:3

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部