期刊文献+

番茄NAC转录因子家族的鉴定及生物信息学分析 被引量:18

Genome-Wide Identification and Bioinformatics Analysis of NAC Gene Family in Tomato
原文传递
导出
摘要 NAC转录因子家族是植物特有的一类转录因子,在植物的生长发育、器官建成及逆境胁迫和激素信号应答中均发挥重要作用。本研究在基因组范围内,利用生物信息学方法对番茄的NAC转录因子家族成员、分布及结构和功能等进行分析。预测结果显示番茄NAC家族包含102个蛋白质,分为12亚族,其中茄属特有的TNAC亚族中成员最多,具有25个,其他NAC转录因子与拟南芥NAC家族具有相似分类。保守基序分析,在番茄NAC结构域中包含7个保守的NAM基序,主要分布在序列的N端,表明这些基序的存在对NAC蛋白质功能的执行是必需的。理化性质和结构分析表明,番茄NAC蛋白质绝大多数是亲水蛋白质,主要以无规则卷曲构成,而α-螺旋、β-折叠和β-转角则散布于整个蛋白质中,在各亚族中没有规律。 NAC proteins belong to one of the largest plant-specific transcription factor families and play diverse roles in plant development processes, organ formation, response to biotic or abiotic cues, and hormone signal- ling. NAC proteins of tomato were genome-wide identified, the distribution on the chromosome, the structure and function of protein were analyzed. 102 predicted proteins constitute the tomato NAC transcrition factor family, which can be clustered into 12 groups. 25 of them belong to TNAC subfamiliy (a novel NAC subfamily which was first identified in tobacco), and other members have the samilar classification with Arabidopsis thali- ana. Conservative motif analysis indicates that there are seven conserve NAM motif in N terminal. The physi- cal and chemical properties and structure analysis showed that most of the tomato NAC proteins are hydrophilic proteins, the secondary structure of 102 predicted NAC proteins was mainly rendom coil, and alpha helix, beta sheet and beta turn are scattered to the whole protein sequence, there is no rule in each subfamily.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第4期461-470,共10页 Plant Physiology Journal
基金 国家自然基金项目(31301780) 黑龙江省教育厅海外学人项目(1252HQ011) 黑龙江省博士后基金(LBH-Z12044) 东北农业大学"寒地蔬菜生物学重点实验室"开放基金(CVB2012-05)
关键词 番茄 NAC转录因子 生物信息学 tomato NAC transcription factor bioinformatics
  • 相关文献

参考文献37

  • 1刘更森,张演义,戴洪义,宋伟.苹果NAC转录因子家族生物信息学分析[J].江苏农业科学,2012,40(6):14-23. 被引量:5
  • 2孙欣,上官凌飞,房经贵,宋长年,王晨,慕茜.葡萄NAC转录因子家族生物信息学分析[J].基因组学与应用生物学,2011,30(2):229-242. 被引量:26
  • 3张春华,上官凌飞,俞明亮,张彦苹,马瑞娟.桃NAC基因家族生物信息学分析[J].江苏农业学报,2012,28(2):406-414. 被引量:13
  • 4Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997). Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. Plant Cell, 9 (6): 841-857.
  • 5Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007). Stress- inducible expression of AtDREBIA in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water- limiting conditions. Plant Cell Rep, 26:2071-2082.
  • 6Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners Dennis ES, Dolferus R (2005). The transcription factor ATAF represses the expression of pathogenesis-related genes in Arab- dopsis. Plant J, 43 (5): 745-757.
  • 7Duval M, Hsieh TF, Kim SY, Thomas TL (2002). Molecular charac- terization ofAtNAM: A member of the Arabidopsis NAC domain superfamily. Plant Mol Biol, 50 (2): 237-248.
  • 8Fang YJ, You J, Xie KB, Xie WB, Xiong LZ (2008). Systematic se- quence analysis and identification of tissue-specific or stress- responsive genes of NAC transcription factor family in rice. Mol Genet Genomics, 280 (6): 547-563.
  • 9Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005). Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed). The Proteomics Pro- tocols Handbook. Clifton: Humana Press, 571-607.
  • 10Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K (2003). Interactions between plant RING-H2 and plant specific NAC (NAM/ATAF1/2/CUC2) proteins: R1NG-H2 molecular specificity and cellular localization. Biochem J, 371:97-108.

二级参考文献53

  • 1谢小芳,黄勤怡,吴为人.植物GH3基因家族的生物信息学分析[J].基因组学与应用生物学,2010,29(5):829-837. 被引量:10
  • 2Birkenbihl R.P., Jach G., Saedler H., and Huijser P., 2005, Functional dissection of the plant-specific SBP-domain: Overlapof the DNA binding and nuclear localization domains, Joumal of Molecular Biology, 352(3): 585-596.
  • 3Deluc L.G., Grimplet J., Wheatley M.D., Tillett R.L., Quilici D. R., Osborne C., Schooley D.A., Schlauch K.A., Cushman J. C., and Cramer G.R., 2007, Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development, BMC Genomics, 8:429.
  • 4Hu H.H., You J., Fang Y.J., Zhu X.Y., Qi Z.Y., and Xiong L.Z., 2008, Characterization of transcription factor gene SIVA C2 conferring cold and salt tolerance in rice, Plant Mol. Biol., 67(1-2): 169-181.
  • 5Jaillon 0., Aury J.M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C., Vezzi A., Legeai F., Hugueney P., Dasilval C., Homer D., Mica E., Jublot D., Poulain J., Bmybre C., Billault A., Segurens B., Gouyvenoux M., Ugarte E., Cattonaro F., Anthouard V., Vico V., Del Fabbro C., Alaux M., Di Gaspero G., Dumas V., Felice N., Paillard S., Juman I., Moroldo M., Scalabrin S.,Canaguier A., Le Clainche I., Malacrida G., Durand E., Pesole G., Laucou V., Chatelet P., Merdinoglu D., Delle- donne M., Pezzotti M., Lecharny A., Scarpelli C., Artigue- nave F., P~ M.E., ValIe G., Morgante M., Caboche M., Adam-Blondon A.F., Weissenbach J., Qu6tier F., Wincker P., and French-Italian Public Consortium for Grapevine Genome Characterization, 2007, The grapevine genome sequence suggests ancestral hexaploidization in major an- giosperm phyla, Nature, 449(7161): 463-467.
  • 6Keilin T., Pang X.Q., Venkateswari J., Halaly T., Crane O., Keren A., Ogrodovitch A., Ophir R., Volpin H., Galbraith D., and Or E., 2007, Digital expression profiling of a grape-bud EST collection leads to new insight into molecular events during grape-bud dormancy release, Plant Science, 173(4): 446-457.
  • 7Kim S.G., Lee A.K., Yoon H.K., and Park C.M., 2008, A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination, Plant J., 55(1): 77-88.
  • 8Kim S.G., Kim S.Y., and Park C.M., 2007, A membrane associated NAC transcription factor regulates saltresponsive flowering via FLOWERING LOCUST in Arabidopsis, Planta, 226 (3): 647-654.
  • 9Mallory A.C., Dugas D.V., Bartel D.P., and Bartel B., 2004, MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs, Curr. Biol., 14(12), 1035-1046.
  • 10Mitsuda N., Iwase A., Yamamoto H., Yoshida M., Seki M., Shinozaki K., and Ohme-Takagi M., 2007, NAC transcriptionfactors, NST 1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis, The Plant Cell, 19:270-280.

共引文献35

同被引文献212

引证文献18

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部