期刊文献+

差分脉冲伏安法对生物冶金中铜(II)的在线检测(英文) 被引量:1

On-line detection of Cu(II) in bioleaching system by anodic stripping differential pulse voltammetry
下载PDF
导出
摘要 采用差分脉冲阳极伏安法实现生物冶金中铜(II)浓度的在线检测。结果表明,当体系中仅有铜(II)存在且其浓度范围为1μmol/L~1 mmol/L时,差分脉冲阳极伏安法所测阳极氧化峰电流与浓度间有很好的线性度。当此体系中含有0.2 mol/L KCl时,铜离子检测的线性范围从1 mmol/L(64 mg/L)扩展到100 mmol/L(6.4 g/L)。在此条件下,二价铜离子的还原分为两步连续的单电子转移过程,中间态为Cu+的络合物CuCl-。此外,在铜的生物冶金体系中,经常会有铁离子存在,因此对铜离子检测的铁离子干扰也进行了研究,结果表明,当铁离子浓度低于100 mmol/L(5.6 g/L)时,其对铜离子检测的干扰可忽略。 On-line Cu (II) ion concentration detection in bioleaching system was achieved by anodic stripping differential pulse voltammetry (ASDPV). Good linearity between Cu (II) concentration and oxidation peak current was obtained when Cu (II) existed in 0K media in the concentration range of 1μmol/L (64μg/L) to 1 mmol/L (64 mg/L). Moreover, when 0.2 mol/L KCl was added into this media, the linear detection range could be extended from 1 mmol/L to 100 mmol/L (6.4 g/L). The reduction of Cu (II) to metallic copper was shown to proceed as two successive single-electron transfer reactions involving an intermediate chemical step where the cuprous ion (Cu+) was complexed by chloride to form the dichlorocuprous anion (CuCl-). In addition, interference effect was also investigated when Fe3+existed in the media, which was the common situation in the copper bioleaching system. The results showed no interference effect once the concentration of Fe3+was less than 100 mmol/L (5.6 g/L).
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期582-587,共6页 中国有色金属学报(英文版)
基金 Projects(2012CB933303,2011CB707505)supported by the National Basic Research Program of China Project(2012BAK08B05)supported by the National Key Technology R&D Program of China Projects(11391901900,11530700800,10391901600,201101042,11CH-15)supported by Science and Technology Commission of Shanghai Municipality,China Project supported by Funding from CSIRO CEO Science Leader Program
关键词 差分脉冲阳极伏安法 峰电流 铜(II) 铁离子干扰 peak current Fe3+interference
  • 相关文献

参考文献26

  • 1PARDHAN N, NATHSARMA K C, SRINNASA R K, SUKLA L B, MISHRA B K. Heap bioleaching of chalcopyrite: A review [J]. Minerals Engineering, 2008, 21 (5): 355-365.
  • 2BAKHTIATI F, ATASHI H, ZIVDAR M, SEYEDBAGHERI S, FAZAELIPOOR M H. Bioleaching kinetics of copper from copper smelters dust [J]. Journal of Industrial and Engineering Chemistry, 2011,17(1): 29-35.
  • 3尹升华,吴爱祥,邱冠周.Bioleaching of low-grade copper sulphides[J].中国有色金属学会会刊:英文版,2008,18(3):707-713. 被引量:7
  • 4KAKSONEN A H, LAVONEN L, KUUSENAHO M, KOLLI AN H, VESTOLA E, PUHAKKA J A, TUOVINEN 0 H. Bioleaching and recovery of metals from final slag waste of the copper smelting industry [J]. Minerals Engineering, 2011, 24(11): 1113-1121.
  • 5NARIN I, SOYLAK M, ELCI L, DOGAN M. Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column [J]. Talanta, 2000, 52(6): 1041-1046.
  • 6HORVATH Z, LASCHI A, VARGA I, MESZAROS E, MOLNAR A. Determination of trace metals and speciation of chromium ions in atmospheric precipitation by ICP-AES and GFAAS [J]. Talanta, 1994, 41(7): 1165-1168.
  • 7GRIEKEN R V. Preconcentration methods for the analysis of water by X-ray spectrometric techniques [J]. Analytica Chimica Acta, 1982, 143: 3-34.
  • 8HETTIPATHIRANA T D, SMITH L H, NORRISH K. Simultaneous determination of low parts-per-billion level pb and as in waters using energy-dispersive X-ray fluorescence spectrometry [J]. Appl Spectrosc, 2001, 55(3): 298-306.
  • 9MONTERO A A, ESTEVEZ A J R, PADILLA A R. Heavy metal analysis of rainwaters: A comparison of TXRF and ASV analytical capabilities [J]. Journal of Radioanalytical and Nuclear Chemistry, 2007,273(2): 427-433.
  • 10SAUVE S, MCBRIDE M B, HENDERSHOT W H. Ion-selective electrode measurements of copper(II) activity in contaminated soils [J]. Archives of Environmental Contamination and Toxicology, 1995, 29(3): 373-379.

二级参考文献9

共引文献6

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部