摘要
在分析粒子群局域最优模型和拓扑结构影响的基础上,提出采用环形拓扑的粒子群算法对跳频信号分量进行搜索.通过粒子之间的信息交互程度控制,实现了粒子在分量时频中心的自动聚集,克服了应用匹配追踪和传统多峰粒子群优化算法对跳频信号自适应分解时存在终止条件难以确定和需要先验知识的问题.
On the analysis of local best model and topological structure affect of particle swarm optimization ( PSO), an algorithm for frequency hopping (FH) component search was proposed based on PSO using a ring topolo- gy. Controlled by the degree of information exchange between the particles, the particles were automatically gathered in the component time and frequency center, which overcome the problems that termination condition is difficult to deter- mine using matching pursuit and a priori knowledge is necessary using traditional muhimodal PSO algorithm for FH sig- nal adaptive decomposition.
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2014年第2期267-270,共4页
Journal of Xinyang Normal University(Natural Science Edition)
基金
河南省高等学校青年骨干教师资助项目(2013GGJS-122)
国家大学生创新创业项目(201310477005)
关键词
跳频信号
粒子群优化
环形拓扑
分量搜索
frequency hopping
particle swarm optimization
ring topology
component search