摘要
在变形温度900-1100℃,应变速率O.01~10S^1的条件下,运用Gleeble-1500热模拟机对Ti40钛合金进行等温热压缩试验,分析了Ti40钛合金的热流变行为,运用训练组数据计算得到ANN预测模型,通过相关性系数和相对误差等一系列统计标准预测并评估了ANN模型的预测能力。结果表明:基于ANN建立的本构关系模型的预测值与实验值吻合良好.并且此ANN模型可用于描述Ti40钛合金在热加工时各参数之间的高度非线性关系,以及能用于非实验条件下Ti40钛合金流变行为的预测,这为Ti40钛合金本构关系模型的建立提供更加准确有效的方法。
Isothermal compression deformation tests were conducted for Ti40 alloy by Gleeble-1500 thermal simulator. According to the obtained experimental data (deformation temperatures range from 900℃ to 1100 ℃ and strain rates range from 0.01 s^-1 to 10 s^-1), the thermal rheological behavior of the alloy was analyzed. An artificial neural network (ANN) was trained with standard back-propagation learning algorithm, and a series of standards (the correlation coefficient and relative error) were used to evaluate the predictive ability of the ANN model. The results show that the feed-forward hack-propagation ANN model can accurately track the experimental data, which can describe the complicated nonlinear relationship of thermo- dynamical parameters well and can be used for theological behavior prediction of the titanium in the non-experimental conditions. Therefore, it provides more convenient and more effective ways to establish the model of constitutive relationship for Ti40 alloys.
出处
《热加工工艺》
CSCD
北大核心
2014年第8期95-97,100,共4页
Hot Working Technology
关键词
热流变行为
本构关系
TI40合金
BP神经网络
thermo-rheological behavior
constitutive relationship
Ti40 alloy
BP neural network