期刊文献+

基于BP神经网络的Ti40钛合金流变性能的预测与评估 被引量:1

Prediction and Evaluation of Rheological Properties of Ti40 Alloy Based on BP Neural Network
下载PDF
导出
摘要 在变形温度900-1100℃,应变速率O.01~10S^1的条件下,运用Gleeble-1500热模拟机对Ti40钛合金进行等温热压缩试验,分析了Ti40钛合金的热流变行为,运用训练组数据计算得到ANN预测模型,通过相关性系数和相对误差等一系列统计标准预测并评估了ANN模型的预测能力。结果表明:基于ANN建立的本构关系模型的预测值与实验值吻合良好.并且此ANN模型可用于描述Ti40钛合金在热加工时各参数之间的高度非线性关系,以及能用于非实验条件下Ti40钛合金流变行为的预测,这为Ti40钛合金本构关系模型的建立提供更加准确有效的方法。 Isothermal compression deformation tests were conducted for Ti40 alloy by Gleeble-1500 thermal simulator. According to the obtained experimental data (deformation temperatures range from 900℃ to 1100 ℃ and strain rates range from 0.01 s^-1 to 10 s^-1), the thermal rheological behavior of the alloy was analyzed. An artificial neural network (ANN) was trained with standard back-propagation learning algorithm, and a series of standards (the correlation coefficient and relative error) were used to evaluate the predictive ability of the ANN model. The results show that the feed-forward hack-propagation ANN model can accurately track the experimental data, which can describe the complicated nonlinear relationship of thermo- dynamical parameters well and can be used for theological behavior prediction of the titanium in the non-experimental conditions. Therefore, it provides more convenient and more effective ways to establish the model of constitutive relationship for Ti40 alloys.
作者 王轶冰
机构地区 安徽大学
出处 《热加工工艺》 CSCD 北大核心 2014年第8期95-97,100,共4页 Hot Working Technology
关键词 热流变行为 本构关系 TI40合金 BP神经网络 thermo-rheological behavior constitutive relationship Ti40 alloy BP neural network
  • 相关文献

参考文献5

  • 1曾卫东,周义刚,舒滢,赵永庆,杨锦,张学敏.基于加工图的Ti-40阻燃钛合金热变形机理研究[J].稀有金属材料与工程,2007,36(1):1-6. 被引量:27
  • 2王敏敏,赵永庆,周廉.Ti40阻燃钛合金的高温蠕变行为[J].稀有金属材料与工程,2003,32(2):117-120. 被引量:16
  • 3Sun Y,Zeng W D,Zhao Y Q.Development of constitutive relationship model of Ti600 alloy using artificial neural network [J].Computational Materials Science,2010,48:686-691.
  • 4Xiao X,Liu G Q,Hu B F.A comparative study on Arrhenius-type constitutive equations and artificial neural network model to predict high-temperature deformation behavior in 12Cr3WV steel [J].Computational Materials Science,2012,62:227-234.
  • 5Li H Y,Wei D D,Li Y H.Application of artificial neural network and constitutive equations to describe the hot compressive behavior of 28CrMnMoV steel [J].Material and Design,2012,35:557-562.

二级参考文献33

  • 1李强,马常祥,赖祖涵.30MnCrNiMoB低合金钢绝热剪切带的形成机制与微结构[J].金属学报,1995,31(11). 被引量:3
  • 2赵永庆,赵香苗,朱康英,罗国珍,周廉.阻燃钛合金[J].稀有金属材料与工程,1996,25(5):1-6. 被引量:43
  • 3Shi Changxu(师昌绪)et al.Dictionary for Material(材料大词典)[M].Beijing:Chemical Industries Press,1994..
  • 4Eyloy D. JOM[J], 1994, 6:14
  • 5Pusso P A. Blenkinsop P A eds. Titanium '95: Science and Technology[C]. Birmingham: The Institute of Materials, the University Press, 1995:675
  • 6Zhao Y Q et al. Mater Sci Engi[J], 2000, A282:153
  • 7Zhao Y Q et al. Mater Sci Engi[J], 1999, A267:167
  • 8Prasad Y V R K et al. International Materials Reviews[J],1998, 43(6): 243
  • 9Raj R. Metall Trans[J], 1981, 12A: 1089
  • 10Prasad Y V R K. Indian J Technol[J], 1990, 28:435

共引文献40

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部